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Internet Appendix 1 – Proof of Propositions 2 and 3

Proposition 2

The fact that seller-initiated turnover is 0 for T < τ with τ > 0 follows directly

from equation (A-2) as p(τ) × (1 − s(τ)) < 1. The fact that secondary-market turnover

is larger for T < Tlim than for T > Tlim if τ < Tlim is a direct consequence of the clientele

effect.

Since dealers in aggregate do not hold any inventory, secondary-market trading vol-

ume can be calculated as twice the trading volume initiated by customers who sell their

bond position prematurely. To calculate turnover, we divide by the total outstanding vol-

ume of all bonds with the respective maturity:

turnover(T ) =

2× 1{T>τ} ×
Tmax∫

T

1
Tinit

×
∑

i=H,L yi (T, Tinit)× λi dTinit

Tmax∫

T

1
Tinit

dTinit

,(IA-1)

where in the numerator and the denominator, we integrate over all bonds with initial ma-

turity Tinit and remaining maturity T that are held by both investor types. yi(T, Tinit) de-

notes the fraction of bonds with remaining maturity T and initial maturity Tinit held in

the portfolios of type-i investors (see equations (A-38) and (A-39) in Appendix A.3 in the

paper). This fraction is multiplied with the rate at which preference shocks arrive. The

denominator gives the total volume of all bonds with remaining maturity T and initial ma-

turity Tinit between T and Tmax. The entire fraction is multiplied by 1{T>τ}, since investors

who experience a preference shock only sell bonds with maturity T > τ .

As elaborated in the main text, the second part of Proposition 2 also directly fol-

lows from the clientele effect. �
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Proposition 3

illiqask(T ) is monotonically increasing in T : To formalize this requirement,

we calculate the first derivative with respect to T of illiqask(T ) and show that it is greater

than or equal to 0, i.e.,

∂illiqask(T )

∂T
=

ln(p(T ))

T 2
−

∂p(T )
∂T

T × p(T )
≥ 0.(IA-2)

(i) For T ≤ min(τ, Tlim), plugging in prices p(T ) from equation (A-8) into (IA-2)

and multiplying with T 2 leads to the condition

b× T +
b× eb×T × T × (b− λH)

−b× eb×T + eT×λH × λH

+ ln

(
b× e−T×λH − e−b×T × λH

b− λH

)

≥ 0.(IA-3)

(IA-3) trivially holds for T = 0. Moreover, for the first derivative with respect to T of the

left-hand side of (IA-3) it holds

b× eT×(b+λH) × T × (b− λH)
2λH

(b× eb×T − eT×λH × λH)
2 ≥ 0(IA-4)

such that (IA-3) is true for all T .

(ii) For T with τ < T ≤ Tlim, multiplying (IA-2) by T and exploiting the relation
∂p(T )
∂T

p(T )
= −λH × s(T ) from (A-10) as well as −

ln(p(T ))
T

= illiqask(T ) yields

illiqask(T ) ≤ λH × s(T ).(IA-5)

λH × s is the liquidity premium for the extreme case that bid-ask spreads s remain con-

stant and investors are forced to sell immediately after a preference shock (see equation (A-

10)). In the general case, however, investors have the option to wait until maturity and for

∂s(T )
∂T

> 0 bid-ask spreads even decrease over the bond’s lifetime. Hence, λH × s(T ) is an

upper bound for illiqask(T ).
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(iii) For T with τ < Tlim < T , multiplying again (IA-2) by T and exploiting the

relation
∂p(T )
∂T

p(T )
= −λL ×

s(T )+∆L(Tlim)
1+∆L(Tlim)

from (A-12) yields

illiqask(T ) ≤ λL ×
s(T ) + ∆L(Tlim)

1 + ∆L(Tlim)
.(IA-6)

pforced(T ) = e−T×illiqforced
with illiqforced = λL ×

s+∆L(Tlim)
1+∆L(Tlim)

solves the indifference condition

(IA-7)

λL × eλL×T

pforced(T )× eλL×T − 1
×

∫ T

0

pforced(x)× (1− s)× e−λL×(T−x) dx
!
= ∆L(Tlim).

Therefore, illiqforced can be interpreted as the liquidity premium low-risk investors would

demand for an artificial bond with the following characteristics: (a) only low-risk investors

are allowed to invest in this bond, (b) the bond has constant bid-ask spreads s, (c) in-

vestors are forced to sell immediately after a preference shock (see also (A-11)). As high-

risk investors are not excluded, bid-ask spreads s(T ) can only decrease when the bond

ages, and investors have the option to wait until maturity, λL ×
s(T )+∆L(Tlim)
1+∆L(Tlim)

is again an

upper bound for illiqask(T ).

The reasoning for (iii) also applies for our case (v), i.e., Tlim ≤ τ < T .

(iv) For the last case of T with Tlim < T ≤ τ , we exploit that p(T ) is continuously

differentiable at T = τ (which can be shown using (A-14) and (A-15) for p(T ) as well as

(A-2) solved for s(τ)). If p(T ) is continuously differentiable at τ , ∂illiqask(T )
∂T

is continuous

at τ (see (IA-2)). Since we have already shown that ∂illiqask(T )
∂T

is larger than or equal to 0

for T with Tlim ≤ τ < T (case (v)), ∂illiqask(T )
∂T

≥ 0 then also holds for T = τ . To show

that ∂illiqask(T )
∂T

≥ 0 for any T with Tlim < T ≤ τ , we introduce an artificial bid-ask spread

function ŝ(T ) ≤ s(T ) such that the corresponding τ̂ that solves equation (A-2) equals T .

Now, we can again exploit case (v) with the artificial bid-ask spread function ŝ(T ), i.e.,

∂illiqask(T )
∂T

≥ 0 for T with Tlim ≤ τ̂ < T . As prices do not depend on bid-ask spreads when
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investors wait when experiencing a preference shock (see also equation (2)), it holds that

p(T ) = p̂(T ) for T ≤ τ̂ < τ . Applying the same continuity argument as above for ∂ ̂illiqask(T )
∂T

then proves the assertion for all T (= τ̂) with Tlim < T ≤ τ . �

illiqask(T ) goes to 0 for T → 0: Applying l’Hôpital’s rule and using (A-8) for

p(T ) directly leads to limT→0 illiqask(T ) = limT→0
− ln(p(T ))

T
= 0. �

illiqask(T ) flattens at Tlim: We prove condition (4) separately for Tlim < τ , Tlim =

τ , and Tlim > τ . For Tlim < τ , using (A-8) and (A-14) for p(T ), (4) transforms to the

condition

(IA-8)

b× eb×Tlim
(
b×

(
eTlim×λL − eTlim×λH

)
− eTlim×λLλH + eb×Tlim(λH − λL) + eTlim×λHλL

)

(eb×Tlim − eTlim×λL)× Tlim × (b× eb×Tlim − eTlim×λHλH)
> 0.

Exploiting that the denominator of (IA-8) is positive and using substitutions b = λL − c1

and λH = λL + c2 with c1, c2 > 0 and c1 < λL, (IA-8) simplifies to

eTlim×c2 × c1 + e−Tlim×c1 × c2− c1− c2 > 0.(IA-9)

We show that this condition holds by verifying that the left-hand side of (IA-9) equals 0

for Tlim → 0, and its first derivative is strictly positive for Tlim > 0.

For Tlim = τ , exactly the same line of arguments as for Tlim < τ , but using (A-15)

instead of (A-14), proves the assertion.

For Tlim > τ , using (A-8) and (A-10), condition (4) evaluates to

λH × s(Tlim) > λL ×
s(Tlim) + ∆L(Tlim)

1 + ∆L(Tlim)
,(IA-10)

which always holds due to the clientele effect. To see why, note that due to the clientele ef-

fect (see equation (A-16)), high-risk investors are not willing to invest in long-term bonds.
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Thus, for a fixed T , the price p(T ) is lower if Tlim is below T than when Tlim is above T .

From that, it directly follows that the integrand when rewriting (A-10) for τ < T ≤ Tlim

as p(T ) = e−
∫ T

τ
λH×s(x) dx × p(τ) is larger than the integrand when rewriting (A-12) for

τ < Tlim < T as p(T ) = e
−

∫ T

Tlim
λL×

s(x)+∆L(Tlim)

1+∆L(Tlim)
dx

× p(Tlim), which directly implies (IA-10). �

illiqbid(T ) is decreasing in T at the short end: We use (3) and (A-8) to cal-

culate

(IA-11)

∂illiqbid(T )

∂T
=

T ×

(

b+ b×eb×T×(b−λH)

eT×λH×λH−b×eb×T +
∂s(T )
∂T

1−s(T )

)

+ ln

(
(1−s(T ))×(b×e−T×λH−e−b×T×λH)

b−λH

)

T 2
.

Plugging in T = 0, the numerator of (IA-11) evaluates to ln(1 − s(0)), which is strictly

negative for s(0) > 0. Hence, limT→0
∂illiqbid(T )

∂T
= −∞. �

Spillover effect: To prove the spillover effect, we proceed in two steps. First, we

show that the effect holds for a fixed Tlim. Second, we verify that the effect persists when

Tlim adapts to the new parameter set. For T > Tlim, we can exploit that bond prices p(T )

in (A-12), (A-14), and (A-15) decrease if ∆L(Tlim) increases. Additionally, they also de-

crease if p(Tlim) (for τ < Tlim < T ) or p(τ) (for Tlim ≤ τ < T ) decreases. Since bond

prices and liquidity premia are inversely related, the spillover effect for a fixed Tlim directly

follows as p(Tlim) and p(τ) decrease and ∆L(Tlim) increases if λH increases. For the second

part of the argument, note that Tlim is lower (higher) due to lower (higher) bond prices

and low-risk investors who now can hold more (less) bonds for given wealth inflows wL.

However, if the change in Tlim were to fully compensate the price effect shown for a fixed

Tlim, it follows that prices above Tlim would be unchanged. Then, the wealth of low-risk

investors would suffice to buy exactly the same amount of bonds as before and, thus, Tlim

also would remain unchanged. Thus, there could not be any compensation due to a differ-

ent Tlim, contradicting the initial assumption.
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To see that a reverse spillover does not hold, note that bond prices p(T ) for T ≤

Tlim in (A-8) and (A-10) are not affected by changes in λL. Thus, liquidity premia for ma-

turities below the minimum of the new and the old Tlim remain unchanged. Note, however,

that Tlim changes when λL changes, and therefore premia between the old and the new Tlim

are affected by a different λL. �

Internet Appendix 2 – Verification of Assumptions on Investor Be-

havior

In this section, we check the assumptions from Appendix A.1 in the paper: First,

for T > τ , it is always optimal to immediately sell the bond if an investor experiences a

preference shock. Second, no investor has an incentive to sell bonds prematurely without

having experienced a preference shock.

Bonds are sold immediately after a preference shock if T > τ : We define

the utility of an investor she receives from selling a T -year bond d time periods after she

experienced a preference shock:

f(d) = (1− s(T − d))× p(T − d)× e−b×d.(IA-12)

Bonds are always sold immediately, iff ∂f(d)
∂d

< 0. For τ < T ≤ Tlim, by plugging in prices

p(T ) from (A-10), it can be shown that this condition holds iff

∂s(t)

∂t

∣
∣
∣
∣
t=T−d

< (1− s(T − d))× (b− λH × s(T − d)),(IA-13)

i.e., if bid-ask spreads do not grow with maturity “too strongly”. For constant bid-ask

spreads s(T ) = s, (IA-13) always holds since ∂s(T )
∂T

= 0, s < 1, and b − λH × s > 0.

The latter condition holds as inserting b−λH×s ≤ 0 into equation (A-2) leads to a contra-

diction (i.e., τ would not exist). Condition (IA-13) also ensures that equation (A-2) cannot
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have more than one solution for τ .

For the other two relevant cases Tlim ≤ τ < T and τ < Tlim < T , ∂f(d)
∂d

< 0

also holds when (IA-13) applies. This follows directly from the clientele effect since p(T )

decreases more slowly for increasing T when T > Tlim than when T ≤ Tlim (low-risk in-

vestors demand lower compensation for holding longer term bonds compared to high-risk

investors). Thus, the incentive to wait in the case of a preference shock is reduced, com-

pared to T ≤ Tlim (since gains from increasing prices when the maturity decreases are

smaller).

It is never optimal to sell bonds without preference shock: High-risk in-

vestors are indifferent between all bonds with maturities between 0 and Tlim. Hence, sell-

ing one bond with T ∈ (0, Tlim], paying the bid-ask spread s(T ), and buying another bond

with Tnew ∈ (0, Tlim] cannot be optimal. Using the same argument, low-risk investors can

never have an incentive to sell bonds with maturity T ≥ Tlim. For them, selling bonds with

T < Tlim without a preference shock can only be optimal if the marginal utility through

the early reinvestment in a bond with maturity Tnew ∈ (Tlim, Tmax] plus the proceeds from

selling the bond with maturity T ∈ (0, Tlim) is higher than the marginal utility from the

later reinvestment (at maturity of the respective bond) plus the proceeds from the matur-

ing bond if no preference shock occurs, or the proceeds from the optimal decision given

that a preference shock occurs:

(∆L(Tlim) + 1)× p(T )× (1− s(T )) > prob(T̃L > T )× (∆L(Tlim) + 1)(IA-14)

+

∫ T−min(T,τ)

0

λL × e−λL×y

︸ ︷︷ ︸

density function of the preference shock time

×(1− s(T − y))× p(T − y) dy

+

∫ T

T−min(T,τ)

λL × e−λL×y × e−b×(T−y) dy.

Note that in deriving (IA-14), we exploit the fact that marginal utility does not depend on

the invested amount (see equation (A-4)), i.e., the optimal investment of an amount z for
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a low-risk investor leads to an expected utility of (1 + ∆L(Tlim)) × z. Rearranging equa-

tion (IA-14) shows that low-risk investors have no incentive to sell bonds without having

experienced a preference shock iff

(1 + ∆L(Tlim))× e−T×λL +
e−T×λL(−1+e(−b+λL)×min(T,τ))×λL

−b+λL
(IA-15)

+
∫ T

min(T,τ)
e(−T+x)×λL × λL × p(x)× (1− s(x)) dx− (1 + ∆L(Tlim))× p(T )× (1− s(T )) > 0.

Condition (IA-15) holds for T ≤ τ since for T < τ , a sell is not optimal even in the case

of a preference shock. As b is an upper bound for the ask liquidity premium of an arbi-

trary maturity (and thus the maximum return a selling investor could gain from her new

bonds), the incentive to sell is lower when no preference shock occurs. For constant bid-

ask spreads s(T ) = s, it can also never be optimal to sell prematurely for τ ≤ T < Tlim, as

the relative wealth gain −
∂p(T )
∂T

p(T )
is higher than for T > Tlim. Since we have already shown

that it is never optimal to sell prematurely for T ≤ τ and T ≥ Tlim, it can also not be

optimal to sell during the time of highest wealth gains. In the most general case with in-

creasing bid-ask spreads s(T ) and for T ∈ (τ, Tlim), (IA-15) has to be verified by plugging

in prices p(T ) from Appendix A.2.

Internet Appendix 3 – Calculation of Liquidity Premia

As discussed in the main text, we compute liquidity premia with two completely in-

dependent approaches. First, we compute the liquidity premium as the difference between

the observed bond yield and the yield of a theoretical bond with identical promised cash

flows, but which is only subject to credit risk. This approach is in line with, e.g., Longstaff

(2005), and does not depend on a specific proxy for bond illiquidity (as any regression

approach must). In the first step, we determine a credit-risky zero (coupon) curve with

which we discount the promised payments of the bond. We collect a time series of daily

CDS mid quotes of all available maturities for each bond issuer from Markit, and derive
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a full term structure by interpolating between the available maturities. Since the shortest

available maturity for CDS quotes is 6 months, we extrapolate the term structure of CDS

premia at the very short end. We then bootstrap a credit-risky zero curve using Treasury

par yields, accounting for different day count conventions and payment frequencies of CDS

and Treasury markets. In the second step, we calculate the liquidity premium as the dif-

ference between the observed bond yield (again differentiating between customer buys and

customer sells) and the hypothetical yield of the bond that is only subject to credit risk.

We denote the resulting liquidity premium by illiq
ask/bid
diff (T ), which we calculate for each

trade in our sample and which we winsorize at the 1% and 99% level. We also use the de-

rived theoretical risk-free bond price, instead of the reported transaction price, to calculate

the bond’s duration since we do not want duration (our right hand side variable) to be af-

fected by construction by the liquidity premium (our left hand side variable).

In our second approach, we follow Dick-Nielsen et al. (2012) and identify the liq-

uidity component in bond yields by regressing monthly bond yield spreads on a liquidity

measure. We calculate the Amihud (2002) liquidity measure, imputed roundtrip costs as in

Feldhütter (2012), and their intra-month standard deviations. We winsorize all measures

at the 1% and 99% quantile, transform them to a standard deviation of 1, and take the

equal-weighted average lmj,t as our aggregated measure of illiquidity for bond j in month

t (for details, we refer to the appendix of Dick-Nielsen et al. (2012)).1 In the second step,

we compute the bond’s yield spread ysj,t as the difference between the observed yield and

the yield of a risk-free bond with identical promised cash flows (where all payments are

discounted at the Treasury curve) and again winsorize yield spreads at the 1% and 99%

level. If the observed yield belongs to a transaction marked as a customer buy (sell) in

TRACE, we denote it by ysask
j,t (T ) (ysbid

j,t (T )). We then compute the average over all ob-

1In contrast to Dick-Nielsen et al. (2012), who demean each measure, the individual measures are

strictly positive in our analysis. The reason is that a perfectly liquid bond should have a liquidity measure

of 0, not a large negative value, for our subsequent regressions to be meaningful.
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served trades for this bond at the bid or ask side on the last day of the month (we only

use the last day to reduce endogeneity of the liquidity proxy). To identify the liquidity

component in bond yield spreads separately for bid and ask yields and for different ma-

turities, we use dummy variables for the side of a trade (1ask and 1bid) and for monthly

duration buckets, i.e., 1{Tm≤T<Tm+ 1
12

}. We then run the following regression model, pooled

across all bonds j and months t:

(IA-16)

ys
ask/bid
j,t (T ) = α +

∑

Tm∈{ 1
12

, 2
12

,...,30}

βask
Tm

1ask × 1{Tm≤T<Tm+ 1
12

} × lmj,t

+
∑

Tm∈{ 1
12

, 2
12

,...,30}

βbid
Tm

1bid × 1{Tm≤T<Tm+ 1
12

} × lmj,t

+
∑

Tm∈{ 1
12

, 2
12

,...,30}

γTm
1{Tm≤T<Tm+ 1

12
} × CDSj,t + δCONTROLSj,t + εj,t.

where T is the bond’s duration in years, lmj,t is as described above, CDSj,t is the 5-year

CDS Markit mid quote2 for issuer of bond j for month t, and CONTROLSj,t include the

month-end numerical rating of the bond (where AAA (D) corresponds to a rating of 1

(22)), bond age in years, and the logarithm of the outstanding amount of the bond. Ta-

ble B1 shows the number of observations for this regression in the last column. The im-

pact of the control variables is as expected: CDS premia affect bond yield spreads posi-

tively and significantly for each duration bucket, with higher coefficient estimates for bonds

with higher duration. Rating and age also have a positive (0.09 and 0.03, respectively) and

significant impact, outstanding amount has a negative (-0.05) and significant impact. Fi-

nally, we can compute an average liquidity component for each duration bucket [Tm, Tm +

2Biswas et al. (2015) show that transaction costs for 5-year CDS, the most liquid maturity, are un-

related to the maturity of the bond on which the CDS are written. Using 5-year CDS thus minimizes

any potential impact of CDS illiquidity, and does not introduce a maturity-dependent bias in the bond

liquidity component.
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1
12
) in the bond yield as

illiqask/bid
reg (Tm) =

̂
β

ask/bid
Tm

× lmMean(Tm),(IA-17)

where
̂
β

ask/bid
Tm

is the estimate from equation (IA-16) and lmMean (Tm) is the mean across all

observations lmj,t that fall in the corresponding duration bucket.3

Internet Appendix 4 – Bid-Ask Spreads

Our model predictions for the long end of the term structure of liquidity premia

depend on the shape of the term structure of bid-ask spreads. Therefore, we calibrate a

parametric form for s(T ) with three parameters sbid-ask
1 , sbid-ask

2 , and sbid-ask
3 to our data

set. Using nonlinear least squares, we minimize the sum of squared errors in the following

equation:

s(Tj,t) = sbid-ask
1 + sbid-ask

2 ×
(

1− e−sbid-ask
3 ×Tj,t

)

+ ǫj,t,(IA-18)

where bid-ask spreads s(Tj,t) are calculated for each bond j with duration Tj,t on days t

with trades on both sides as the difference between the average bid and ask transaction

price. We winsorize bid-ask spreads at the 1% and 99% quantile. Figure IA1 presents the

calibrated function s(T ) together with average bid-ask spreads for monthly duration buck-

ets.

Figure IA1 shows two important properties of bid-ask spreads. First, bid-ask spreads

are small but distinctly positive even for securities with very short maturities, which corre-

sponds to a fixed component of transaction costs. Second, bid-ask spreads increase in ma-

3We choose this specification of illiqask/bid
reg to be consistent with Dick-Nielsen et al. (2012). As a ro-

bustness check, we additionally include the intercept from the first-stage regression and the effect of age,

and find that our hypotheses are also confirmed for this extended specification.
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Figure IA1: Empirical Term Structure of Bid-Ask Spreads

Figure IA1 presents the average term structure of proportional bid-ask spreads (squares)
together with the calibrated bid-ask spread function s(T ) = 0.0044+0.0241

(
1− e−0.1014T

)

(solid line). Bid-ask spreads are computed for each bond on days with trades on both
sides as the difference between the average bid and ask transaction price. The depicted
average spread is computed as the mean spread across all bonds of a given duration. The
sample period is from Oct. 1, 2004 to Sept. 30, 2012.
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turity. We therefore expect the term structure of liquidity premia to behave as described

in Section IV in the paper.

Internet Appendix 5 – Robustness Checks

Swap Rates as Risk-Free Interest Rates

Table IA1 shows the results when we re-estimate equation (5) using swap rates as

the risk-free reference curve to calculate liquidity premia.
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Table IA1 shows that our estimation results are mostly unaffected by the use of

swap rates as risk-free rates. For ask liquidity premia, the estimates for the slope at the

short end are positive in all and significant in 6 out of 10 specifications of the exogenous

breakpoint. The significantly positive estimates for the long end are consistently below

those for the short end and the difference is significant in 5 out of the 10 cases. For both

endogenous breakpoint specifications, the slope is significantly positive at the short end

and significantly flatter but still (significantly) positive at the long end. For bid liquidity

premia, the slope at the short end is always negative and significant in 8 out of 10 exoge-

nous breakpoint specifications. The slope at the long end is now positive and significant

in all cases, but, compared to the short end, quantitatively small. The difference between

long- and short-term premia is always positive and significant in 9 out of 10 the cases. The

results for the endogenously estimated breakpoint are again the same: significantly nega-

tive slopes at the short end and small but significantly positive slopes at the long end.

In Table IA2, we present the results for the spillover analysis using swap rates as

the risk-free reference curve.

Table IA2 confirms the results from Section V.E in the paper: No individual coef-

ficient estimate of βi,long is significant. Even though we can now reject the joint hypothe-

ses that both coefficients β1,long and β2,long are equal to 0 in some specifications, the corre-

sponding estimates are negative. This does not indicate a spillover. In contrast, 10 out of

20 estimates for βi,short are positive and significant, and we can reject the joint hypothesis

that both coefficient estimates β1,short and β2,short are equal to 0 in 6 out of 10 cases, and

that they sum up to 0 in 7 out of 10 cases.

Our main conclusions remain unaffected: ask liquidity premia increase more strongly

for shorter maturities, bid liquidity premia exhibit an inverse shape at the short end and

are flat or increase slightly for longer maturities, and liquidity shocks spill over from the

short end to the long end of the term structure only.
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Analysis of AAA Bonds

In our second robustness check, we analyze whether our results are sensitive to how

we adjust the observed yield spreads for credit risk. To do so, we concentrate on those

bonds which are least likely to be affected by credit risk: Bonds with a AAA rating by at

least two rating agencies on the observation date. We also drop all transactions which oc-

curred after Mar. 31, 2007 since a AAA rating might not be indicative of negligible credit

risk during the financial crisis. General Electric bonds, e.g., exhibited increasing yields

long before the downgrade from AAA to AA+ by Standard&Poor’s on Mar. 12, 2009. For

the calculation of illiq
ask/bid
diff , we interpret the difference between the bond’s yield minus a

theoretical yield calculated by discounting the bond’s cash flows with the Treasury curve

as a pure liquidity premium. Since all bonds exhibit a AAA rating, we exclude rating as

a control variable. For illiqask/bid
reg , we also exclude CDS quotes in the first-step regression

in equation (IA-16).4 We explore the relation between liquidity premia and maturity for

AAA rated bonds in Table IA3.

Table IA3 shows that our results are, if anything, stronger for the AAA sample

than for the entire sample. For ask liquidity premia, the estimates for βask
1 are always pos-

itive and significant in 9 out of 10 (2 out of 2) exogenous (endogenous) breakpoint speci-

fications. The slope at the long end is significantly positive and significantly flatter than

at the short end in 11 out of the in total 12 specifications, respectively. Bid liquidity pre-

mia exhibit always negative (always positive) estimates for the slope at the short (long)

end, which are significant in 10 (12) out of the in total 12 cases. The difference between

the long and the short end is significant in 11 out of the 12 cases.

4In an alternative robustness check, we use agency bonds instead of AAA rated bonds. The results are

virtually the same.
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Table IA1: Regression of Swap-Implied Ask and Bid Liquidity Premia on Duration

Table IA1 presents the regression of swap-implied ask and bid liquidity premia (in percentage points) on the bond’s
duration and control variables for different breakpoints that separate the short end from longer maturities of the liquidity
term structure:

illiqask
diff/reg(T ) = αask + βask

1 1{T≤θ} × (T − θ) + βask
2 1{T>θ} × (T − θ) + γaskCONTROLS + ε,

illiqbid
diff/reg(T ) = αbid + βbid

1 1{T≤θ} × (T − θ) + βbid
2 1{T>θ} × (T − θ) + γbidCONTROLS + ε.

In Panel A (panel regression), the liquidity premium illiq
ask/bid
diff is determined for each bond and each trade as the difference

of the bond yield and a theoretical credit adjusted yield calculated by discounting the bond’s cash flows with a bootstrapped
discount curve computed from swap rates and a CDS curve. In Panel B (cross-sectional regression), the average liquidity

premium illiq
ask/bid
reg for each monthly duration bucket is determined as in Dick-Nielsen et al. (2012) as the proportion of the

yield spread (in excess of the swap curve) explained by the liquidity measure lm in a linear regression, where lm is the equal-
weighted average of the Amihud (2002) liquidity measure, imputed roundtrip costs as in Feldhütter (2012), and the standard
deviations of these measures (for details, see the Internet Appendix 3). The explanatory variable is the duration T (in years)
minus the breakpoint θ for T ≤ θ and T > θ. In Panel A, we additionally include the control variables AGE in years, the
average numerical rating (RATING), and the logarithm of the outstanding amount (ln(AMT)) and use firm and month fixed
effects. The breakpoints θ equal 3 months, 6 months, 1 year, 2 years, and 3 years and we estimate an endogenous break-
point θ∗. In Panel A, we present standard errors clustered at the firm level in parentheses. In Panel B, we use White (1982)
standard errors. The sample period is from Oct. 1, 2004 to Sept. 30, 2012. * and ** indicate significance at the 5% and 1%
levels, respectively.

Ask Bid

θ = 0.25 θ = 0.5 θ = 1 θ = 2 θ = 3 θ∗ = 2.3103 θ = 0.25 θ = 0.5 θ = 1 θ = 2 θ = 3 θ∗ = 0.6553

Panel A: Liquidity Premium illiq
ask/bid
diff

1{T≤θ} × (T − θ) 1.1274 0.8630 0.6589∗∗ 0.3906∗∗ 0.2622∗∗ 0.3398∗∗ −10.4996∗∗ −3.1447∗∗ −0.9406∗∗ −0.2653∗∗ −0.1229∗∗ −1.9929∗∗

(1.3854) (0.5602) (0.2252) (0.1038) (0.0569) (0.0848) (0.6294) (0.2641) (0.1126) (0.0528) (0.0334) (0.1841)
1{T>θ} × (T − θ) 0.1034∗∗ 0.1019∗∗ 0.0958∗∗ 0.0825∗∗ 0.0743∗∗ 0.0796∗∗ 0.0314∗∗ 0.0371∗∗ 0.0437∗∗ 0.0512∗∗ 0.0573∗∗ 0.0398∗∗

(0.0120) (0.0124) (0.0131) (0.0155) (0.0177) (0.0162) (0.0108) (0.0105) (0.0103) (0.0111) (0.0122) (0.0104)

Controls

AGE [in years] −0.0001 0.0006 0.0035 0.0083 0.0098 0.0091 0.0307∗∗ 0.0284∗∗ 0.0257∗∗ 0.0235∗∗ 0.0231∗∗ 0.0273∗∗

(0.0078) (0.0080) (0.0083) (0.0092) (0.0097) (0.0095) (0.0060) (0.0057) (0.0054) (0.0051) (0.0051) (0.0055)
RATING −0.0091 −0.0078 −0.0043 0.0012 0.0012 0.0014 0.1627∗∗ 0.1617∗∗ 0.1626∗∗ 0.1637∗∗ 0.1644∗∗ 0.1615∗∗

(0.0497) (0.0494) (0.0491) (0.0482) (0.0481) (0.0482) (0.0545) (0.0540) (0.0537) (0.0538) (0.0540) (0.0539)
ln(AMT) 0.0682∗ 0.0681∗ 0.0684∗ 0.0679∗ 0.0633∗ 0.0668∗ −0.0420 −0.0407 −0.0405 −0.0423 −0.0414 −0.0401

(0.0319) (0.0318) (0.0316) (0.0308) (0.0294) (0.0304) (0.0233) (0.0237) (0.0239) (0.0240) (0.0234) (0.0238)

Firm Fixed Effects Yes
Month Fixed Effects Yes

1{T>θ} × (T − θ) −1.0240 −0.7611 −0.5631∗ −0.3081∗∗ −0.1878∗∗ −0.2602∗∗ 10.5310∗∗ 3.1818∗∗ 0.9843∗∗ 0.3165∗∗ 0.1802∗∗ 2.0327∗∗

−1{T≤θ} × (T − θ) (1.3907) (0.5663) (0.2319) (0.1142) (0.0697) (0.0960) (0.6335) (0.2667) (0.1148) (0.0572) (0.0390) (0.1864)

N 3,482,571 1,926,684

R2 0.4040 0.4045 0.4071 0.4114 0.4112 0.4116 0.3375 0.3434 0.3417 0.3358 0.3328 0.3439
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Ask Bid

θ = 0.25 θ = 0.5 θ = 1 θ = 2 θ = 3 θ∗ = 6.6667 θ = 0.25 θ = 0.5 θ = 1 θ = 2 θ = 3 θ∗ = 0.5211

Panel B: Liquidity Premium illiq
ask/bid
reg

Constant −0.0228 −0.0080 0.0245 0.0993∗∗ 0.1730∗∗ 0.4104∗∗ 0.4215∗∗ 0.4105∗∗ 0.4126∗∗ 0.4512∗∗ 0.5018∗∗ 0.4098∗∗

(0.0334) (0.0337) (0.0339) (0.0338) (0.0341) (0.0360) (0.0370) (0.0350) (0.0355) (0.0365) (0.0374) (0.0350)
1{T≤θ} × (T − θ) 0.1322 0.1535 0.1513∗ 0.1463∗∗ 0.1278∗∗ 0.0889∗∗ −6.0137∗∗ −2.0990∗∗ −0.6285∗∗ −0.1195 −0.0131 −1.9656∗∗

(0.5288) (0.1881) (0.0722) (0.0333) (0.0208) (0.0086) (0.2664) (0.2756) (0.1436) (0.0689) (0.0410) (0.2649)
1{T>θ} × (T − θ) 0.0517∗∗ 0.0516∗∗ 0.0510∗∗ 0.0488∗∗ 0.0463∗∗ 0.0369∗∗ 0.0332∗∗ 0.0348∗∗ 0.0360∗∗ 0.0357∗∗ 0.0342∗∗ 0.0349∗∗

(0.0049) (0.0050) (0.0052) (0.0056) (0.0061) (0.0087) (0.0053) (0.0053) (0.0056) (0.0061) (0.0066) (0.0053)

1{T>θ} × (T − θ) −0.0805 −0.1019 −0.1003 −0.0975∗∗ −0.0815∗∗ −0.0519∗∗ 6.0468∗∗ 2.1338∗∗ 0.6646∗∗ 0.1553∗ 0.0472 2.0004∗∗

−1{T≤θ} × (T − θ) (0.5308) (0.1908) (0.0758) (0.0374) (0.0256) (0.0163) (0.2712) (0.2776) (0.1457) (0.0716) (0.0446) (0.2670)

N 225 225

R2 0.4601 0.4602 0.4609 0.4654 0.4708 0.4822 0.2415 0.2537 0.2446 0.2190 0.2069 0.2538
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Table IA2: Spillover Analysis of Swap-Implied Liquidity Premia

Table IA2 presents a vector autoregression (VAR) analysis of monthly average swap-implied ask and bid liquidity
premia (in percentage points) on lagged liquidity premia for different breakpoints that separate short-term from long-term
maturities of the liquidity term structure:

illiqask
t (T < θ) = αask

short +
2∑

i=1

φask
i,shortilliq

ask
t−i(T < θ) +

2∑

i=1

βask
i,longilliq

ask
t−i(T ≥ θ) + εt,

illiqbid
t (T < θ) = αbid

short +

2∑

i=1

φbid
i,shortilliq

bid
t−i(T < θ) +

2∑

i=1

βbid
i,longilliq

bid
t−i(T ≥ θ) + εt,

illiqask
t (T ≥ θ) = αask

long +
2∑

i=1

βask
i,shortilliq

ask
t−i(T < θ) +

2∑

i=1

φask
i,longilliq

ask
t−i(T ≥ θ) + εt,

illiqbid
t (T ≥ θ) = αbid

long +
2∑

i=1

βbid
i,shortilliq

bid
t−i(T < θ) +

2∑

i=1

φbid
i,longilliq

bid
t−i(T ≥ θ) + εt.

Average monthly liquidity premia illiqask/bid for all bonds with durations above and below breakpoint θ are determined with
the difference approach, i.e., as the difference of the bond yield and a theoretical credit adjusted yield calculated by discount-
ing the bond’s cash flows with a bootstrapped discount curve computed from swap rates and a CDS curve. A time trend
and the square of the time are removed from the time series of monthly average liquidity premia. The breakpoints θ equal
3 months, 6 months, 1 year, 2 years, and 3 years. We present Newey and West (1987) standard errors with 3 lags in paren-
theses. We provide χ2 statistics for the null hypotheses, that i) both lag parameters are jointly 0 and ii) the sum of both lag
parameters is 0. The sample period is from Oct. 1, 2004 to Sept. 30, 2012. * and ** indicate significance at the 5% and 1%
levels, respectively.

Ask Bid

θ = 0.25 θ = 0.5 θ = 1 θ = 2 θ = 3 θ = 0.25 θ = 0.5 θ = 1 θ = 2 θ = 3

Panel A: Short-Term Liquidity Premium illiq
ask/bid
t (T < θ)

Constant 0.0032 0.0024 0.0025 0.0018 0.0010 −0.0012 −0.0047 −0.0067 −0.0051 −0.0039
(0.0724) (0.0822) (0.0718) (0.0631) (0.0563) (0.1016) (0.1189) (0.1181) (0.0981) (0.0804)

illiq
ask/bid
t−1 (T < θ) 0.4193∗∗ 0.4336∗∗ 0.4779∗∗ 0.3787∗∗ 0.3673∗∗ 0.7012∗∗ 0.6452∗∗ 0.6605∗∗ 0.5017∗∗ 0.4753∗∗

(0.1481) (0.0837) (0.0921) (0.0982) (0.0770) (0.1142) (0.1416) (0.0748) (0.0662) (0.0548)

illiq
ask/bid
t−2 (T < θ) 0.0313 0.1756∗ 0.0870 0.1347 0.1523∗ −0.0993 0.0132 −0.0238 0.0781 0.1324

(0.1390) (0.0821) (0.0907) (0.0678) (0.0660) (0.1076) (0.1026) (0.0484) (0.0715) (0.0997)

illiq
ask/bid
t−1 (T ≥ θ) −0.3060 −0.9764 −0.6668 −0.1022 0.1044 −0.0920 −0.9727 −1.3665 −0.6437 −0.2391

(0.4628) (0.5262) (0.4132) (0.3915) (0.3549) (1.0935) (0.7455) (0.7539) (0.7972) (0.6055)

illiq
ask/bid
t−2 (T ≥ θ) −0.3646 −0.0837 −0.3237 −0.4533 −0.4813 −0.0780 0.4493 0.7602 0.4138 0.0770

(0.5624) (0.6316) (0.5482) (0.4925) (0.4117) (1.0223) (0.7600) (0.7508) (0.7978) (0.5744)

H0: φ
ask/bid
1,short = 0, φ

ask/bid
2,short = 0 12.2194∗∗ 29.9294∗∗ 31.7875∗∗ 18.5066∗∗ 22.7964∗∗ 89.8912∗∗ 115.1602∗∗ 95.8715∗∗ 63.9488∗∗ 76.2974∗∗

H0: φ
ask/bid
1,short + φ

ask/bid
2,short = 0 10.5234∗∗ 25.1217∗∗ 24.7494∗∗ 18.1564∗∗ 18.1129∗∗ 81.7559∗∗ 98.1427∗∗ 90.3459∗∗ 24.5554∗∗ 27.7246∗∗

H0: β
ask/bid
1,long = 0, β

ask/bid
2,long = 0 1.9814 18.6756∗∗ 22.2960∗∗ 12.8875∗∗ 8.4810∗ 0.2688 5.7694 11.2983∗∗ 1.9837 1.2889

H0: β
ask/bid
1,long + β

ask/bid
2,long = 0 1.9123 13.2946∗∗ 14.3864∗∗ 9.8661∗∗ 8.1984∗∗ 0.2578 4.5868∗ 9.4018∗∗ 1.5332 1.2884

N 94

R2 0.2538 0.3776 0.4377 0.2865 0.2648 0.3910 0.3147 0.3191 0.2387 0.2747
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Ask Bid

θ = 0.25 θ = 0.5 θ = 1 θ = 2 θ = 3 θ = 0.25 θ = 0.5 θ = 1 θ = 2 θ = 3

Panel B: Long-Term Liquidity Premium illiq
ask/bid
t (T ≥ θ)

Constant −0.0027 −0.0033 −0.0032 −0.0034 −0.0035 −0.0039 −0.0042 −0.0043 −0.0040 −0.0038
(0.0177) (0.0164) (0.0152) (0.0137) (0.0125) (0.0193) (0.0178) (0.0145) (0.0125) (0.0114)

illiq
ask/bid
t−1 (T < θ) −0.0357 0.0189 0.0122 0.0498 0.0873∗ 0.0427 0.0452∗ 0.0447∗∗ 0.0686∗∗ 0.0938∗∗

(0.0277) (0.0321) (0.0301) (0.0308) (0.0368) (0.0234) (0.0181) (0.0123) (0.0128) (0.0171)

illiq
ask/bid
t−2 (T < θ) 0.0415 0.0187 0.0371∗ 0.0329 0.0275 0.0331∗ 0.0208 0.0303∗∗ 0.0407∗∗ 0.0425∗

(0.0234) (0.0136) (0.0154) (0.0183) (0.0209) (0.0156) (0.0140) (0.0090) (0.0138) (0.0214)

illiq
ask/bid
t−1 (T ≥ θ) 0.9374∗∗ 0.8242∗∗ 0.8922∗∗ 0.8966∗∗ 0.8997∗∗ 0.6151∗∗ 0.6013∗∗ 0.6394∗∗ 0.7138∗∗ 0.7461∗∗

(0.0958) (0.0956) (0.1025) (0.1059) (0.0991) (0.1210) (0.1124) (0.1155) (0.1161) (0.1046)

illiq
ask/bid
t−2 (T ≥ θ) −0.1307 0.0057 −0.0400 −0.0491 −0.0633 0.1145 0.1732 0.1733 0.0628 0.0164

(0.0767) (0.1079) (0.1009) (0.0869) (0.0803) (0.1223) (0.1143) (0.1243) (0.0991) (0.0905)

H0: β
ask/bid
1,short = 0, β

ask/bid
2,short = 0 3.1756 2.4704 5.9443 4.5679 7.7370∗ 39.5763∗∗ 37.1338∗∗ 49.7570∗∗ 54.6464∗∗ 98.4966∗∗

H0: β
ask/bid
1,short + β

ask/bid
2,short = 0 0.0712 1.2797 2.1238 4.2704∗ 7.7340∗∗ 28.1767∗∗ 34.6423∗∗ 46.9903∗∗ 51.0746∗∗ 79.7507∗∗

H0: φ
ask/bid
1,long = 0, φ

ask/bid
2,long = 0 145.1936∗∗ 280.3132∗∗ 343.2987∗∗ 406.1465∗∗ 342.9471∗∗ 263.0745∗∗ 440.8164∗∗ 524.1720∗∗ 486.6117∗∗ 442.2562∗∗

H0: φ
ask/bid
1,long + φ

ask/bid
2,long = 0 133.2373∗∗ 219.7953∗∗ 326.7703∗∗ 387.3104∗∗ 336.7237∗∗ 256.4033∗∗ 431.6646∗∗ 470.4445∗∗ 432.5804∗∗ 422.1271∗∗

N 94

R2 0.7007 0.7258 0.7721 0.8059 0.8294 0.7696 0.7918 0.8463 0.8843 0.8982
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Table IA3: Regression of Ask and Bid Liquidity Premia on Duration for AAA Rated Bonds

Table IA3 presents the regression of ask and bid liquidity premia (in percentage points) on the bond’s duration and
control variables for different breakpoints that separate the short end from longer maturities of the liquidity term structure:

illiqask
diff/reg(T ) = αask + βask

1 1{T≤θ} × (T − θ) + βask
2 1{T>θ} × (T − θ) + γaskCONTROLS + ε,

illiqbid
diff/reg(T ) = αbid + βbid

1 1{T≤θ} × (T − θ) + βbid
2 1{T>θ} × (T − θ) + γbidCONTROLS + ε.

In Panel A (panel regression), the liquidity premium illiq
ask/bid
diff is determined for each bond and each trade as the differ-

ence of the AAA-rated bond’s yield and a theoretical risk free yield calculated by discounting the bond’s cash flows with the

Treasury curve. In Panel B (cross-sectional regression), the average liquidity premium illiq
ask/bid
reg for each monthly duration

bucket is determined as in Dick-Nielsen et al. (2012) as the proportion of the yield spread of a AAA-rated bond (in excess of
the Treasury curve) explained by the liquidity measure lm in a linear regression, where lm is the equal-weighted average of
the Amihud (2002) liquidity measure, imputed roundtrip costs as in Feldhütter (2012), and the standard deviations of these
measures (we exclude CDS quotes and ratings in the first-step regression in equation (IA-16)). The explanatory variable
is the duration T (in years) minus the breakpoint θ for T ≤ θ and T > θ. In Panel A, we additionally include the con-
trol variables AGE in years and the logarithm of the outstanding amount (ln(AMT)) and use firm and month fixed effects.
The breakpoints θ equal 3 months, 6 months, 1 year, 2 years, and 3 years and we estimate an endogenous breakpoint θ∗. In
Panel A, we present standard errors clustered at the firm level in parentheses. In Panel B, we use White (1982) standard
errors. The sample period is from Oct. 1, 2004 to Sept. 30, 2012. * and ** indicate significance at the 5% and 1% levels,
respectively.

Ask Bid

θ = 0.25 θ = 0.5 θ = 1 θ = 2 θ = 3 θ∗ = 4.0787 θ = 0.25 θ = 0.5 θ = 1 θ = 2 θ = 3 θ∗ = 0.8092

Panel A: Liquidity Premium illiq
ask/bid
diff

1{T≤θ} × (T − θ) 0.7061∗∗ 0.4063∗∗ 0.2654∗∗ 0.1695∗∗ 0.1328∗∗ 0.1083∗∗ −3.2910∗∗ −1.0781∗∗ −0.3528∗∗ −0.0701∗∗ −0.0090 −0.5085∗∗

(0.1686) (0.0644) (0.0296) (0.0124) (0.0076) (0.0056) (0.0741) (0.0259) (0.0163) (0.0114) (0.0084) (0.0174)
1{T>θ} × (T − θ) 0.0626∗∗ 0.0615∗∗ 0.0574∗∗ 0.0462∗∗ 0.0326∗∗ 0.0176∗∗ 0.0262∗∗ 0.0305∗∗ 0.0362∗∗ 0.0392∗∗ 0.0373∗∗ 0.0344∗∗

(0.0113) (0.0113) (0.0110) (0.0098) (0.0071) (0.0028) (0.0058) (0.0063) (0.0074) (0.0095) (0.0111) (0.0070)

Controls

AGE [in years] 0.0076∗ 0.0083∗ 0.0100∗∗ 0.0113∗∗ 0.0108∗∗ 0.0109∗∗ 0.0328∗∗ 0.0303∗∗ 0.0288∗∗ 0.0314∗∗ 0.0337∗∗ 0.0289∗∗

(0.0033) (0.0033) (0.0032) (0.0028) (0.0021) (0.0015) (0.0024) (0.0020) (0.0020) (0.0028) (0.0033) (0.0019)
ln(AMT) 0.0130∗ 0.0119∗ 0.0106∗ 0.0142∗∗ 0.0166∗∗ 0.0124 −0.0152∗∗ −0.0137∗∗ −0.0131∗∗ −0.0178∗∗ −0.0182∗∗ −0.0128∗∗

(0.0050) (0.0050) (0.0050) (0.0048) (0.0058) (0.0070) (0.0038) (0.0036) (0.0034) (0.0029) (0.0030) (0.0035)

Firm Fixed Effects Yes
Month Fixed Effects Yes

1{T>θ} × (T − θ) −0.6434∗∗ −0.3449∗∗ −0.2080∗∗ −0.1233∗∗ −0.1002∗∗ −0.0906∗∗ 3.3172∗∗ 1.1086∗∗ 0.3890∗∗ 0.1093∗∗ 0.0463∗∗ 0.5429∗∗

−1{T≤θ} × (T − θ) (0.1761) (0.0714) (0.0357) (0.0172) (0.0094) (0.0051) (0.0776) (0.0309) (0.0193) (0.0158) (0.0141) (0.0207)

N 116,404 66,449

R2 0.4443 0.4472 0.4574 0.4787 0.4943 0.5017 0.2003 0.2156 0.2191 0.1964 0.1837 0.2209
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Ask Bid

θ = 0.25 θ = 0.5 θ = 1 θ = 2 θ = 3 θ∗ = 4.9303 θ = 0.25 θ = 0.5 θ = 1 θ = 2 θ = 3 θ∗ = 0.4167

Panel B: Liquidity Premium illiq
ask/bid
reg

Constant −0.1128∗∗ −0.1060∗∗ −0.0877∗∗ −0.0440∗∗ 0.0006 0.0644∗∗ 0.1780∗∗ 0.1693∗∗ 0.1640∗∗ 0.1728∗∗ 0.1907∗∗ 0.1705∗∗

(0.0177) (0.0181) (0.0178) (0.0156) (0.0128) (0.0110) (0.0163) (0.0146) (0.0138) (0.0142) (0.0137) (0.0144)
1{T≤θ} × (T − θ) 0.5345 0.2164∗ 0.1512∗∗ 0.1166∗∗ 0.0974∗∗ 0.0674∗∗ −2.7170∗∗ −0.9499∗∗ −0.3059∗∗ −0.0735∗ −0.0198 −1.3124∗∗

(0.2772) (0.0871) (0.0456) (0.0204) (0.0117) (0.0054) (0.1653) (0.1626) (0.0796) (0.0326) (0.0190) (0.1994)
1{T>θ} × (T − θ) 0.0171∗∗ 0.0168∗∗ 0.0157∗∗ 0.0122∗∗ 0.0078∗ −0.0003 0.0092∗∗ 0.0104∗∗ 0.0116∗∗ 0.0118∗∗ 0.0109∗∗ 0.0102∗∗

(0.0029) (0.0030) (0.0030) (0.0031) (0.0032) (0.0035) (0.0031) (0.0031) (0.0032) (0.0035) (0.0038) (0.0031)

1{T>θ} × (T − θ) −0.5174 −0.1996∗ −0.1356∗∗ −0.1044∗∗ −0.0896∗∗ −0.0677∗∗ 2.7262∗∗ 0.9603∗∗ 0.3175∗∗ 0.0853∗ 0.0306 1.3226∗∗

−1{T≤θ} × (T − θ) (0.2783) (0.0887) (0.0471) (0.0219) (0.0133) (0.0073) (0.1671) (0.1634) (0.0805) (0.0339) (0.0206) (0.2002)

N 152 152

R2 0.2315 0.2328 0.2430 0.2851 0.3400 0.3936 0.1177 0.1383 0.1294 0.0875 0.0611 0.1432
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