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Abstract

We investigate the relation between equity option returns and well-known stock return
anomalies. For both the aggregate mispricing measure of Stambaugh, Yu, and Yuan
(2015) and the special case of Bali, Cakici, and Whitelaw’s (2011) MAX anomaly, we
find evidence that option investors actively trade against mispricings in the underlying
stocks. These results are in line with the literature on the higher sophistication of option
traders and complement the notion of smart money in mitigating anomalies, but contrast
previous analyses that argue for an additional mispricing in option returns. Finally,
we find that buying put options is the main channel through which investors trade
against the anomaly signals and document conclusive interactions between anomalies
and arbitrage frictions.
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1 Introduction

An extensive part of the finance literature is devoted to the explanation of the cross-section

of returns. The seminal capital asset pricing model marks a milestone in this research area,

but has been predominantly found to fail empirically (Black, Jensen, and Scholes, 1972;

Frazzini and Pedersen, 2014). In response, additional factors have been proposed to address

anomalous returns related to firm size, the book-to-market ratio, and momentum. Over the

years, the literature has produced a whole “zoo” of factors with questionable significance

(Cochrane, 2011; Harvey, Liu, and Zhu, 2016). At the same time, an equally large literature

documents countless anomalies in the cross-section of returns that cannot be explained by

standard risk factors. Recently, Hou, Xue, and Zhang (2018) have tried to replicate 447 of

these anomalies and found evidence for widespread p-hacking. Nevertheless, far more than

one hundred anomalies survive even under the most restrictive requirements for statistical

and economic significance.

Compared to the large literature on stock mispricing, surprisingly little is known about

whether and how such stock return anomalies propagate to prices and returns of equity

options. With their asymmetric payoff profiles and high leverage, options are an ideal vehicle

for sophisticated investors to trade in accordance with or against the signals provided by

anomaly variables. On the one hand, options are by definition derivative instruments and

therefore tightly linked to their underlying stocks, which would suggest that options just

mechanically reflect the stock mispricing. On the other hand, the literature has documented

salient frictions in stock and option markets that potentially lead to a certain degree of

segmentation between these markets. For instance, Gârleanu, Pedersen, and Poteshman

(2009) argue that option dealers are not able to perfectly hedge the option positions in their
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inventory, such that they charge a premium for the unhedgeable risk they face.1 As a result,

option prices and returns depend on the net demand of option end-users, contrasting the

standard view of options being purely redundant derivatives. In particular, if investors trade

on stock anomaly signals in the option market, their demand may result in anomalous option

returns in excess of the effects induced by the mispricing of the underlying stock.

In principle, such a potential option-specific reaction to stock mispricing could go in either

direction. That is, options could be even more mispriced as just implied by the mechanical link

to the mispriced stock because option end-users follow the same misguided trading motives

as the investors in the stock market. Alternatively, if the option traders actually recognize

that a stock is mispriced, they may choose to trade against the mispricing. Consequently, the

price impact of these arbitrage trades moves option prices closer to their hypothetical, true

value in the absence of stock mispricing. Recent literature such as Boyer and Vorkink (2014)

or Byun and Kim (2016) seems to point towards the first direction. But are stock anomalies

indeed more pronounced within option markets? Or do option investors trade against the

mispricing instead of boosting it? Which channels do they use to implement their goals and

what are major impediments to their strategies? These are the central research questions of

this paper.

As a first step towards an answer, we derive a model-free decomposition of stock excess

returns into the return of an option-implied synthetic forward and the excess return of a

conversion trade, that is, an offsetting portfolio of a long stock and a short synthetic forward.

This decomposition may seem trivial, but we show that it allows a precise analysis of anomaly

returns. Specifically, the returns of synthetic forwards capture the part of stock mispricing

1Further demand-dependent premia in option returns may result from funding constraints (Hitzemann
et al., 2018) and stock illiquidity (Kanne, Korn, and Uhrig-Homburg, 2016), for example.
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that is mechanically embedded in option prices, whereas the conversion returns quantify the

additional response of the option traders to the anomaly signal.

We put these insights to the test in an analysis of U.S. stock and option returns. To quantify

mispricing, we rely on the aggregate mispricing measure (MISP) proposed by Stambaugh,

Yu, and Yuan (2015), which summarizes 11 prominent stock return anomalies. Guided by

the model-free return decomposition, we analyze returns of MISP-sorted portfolios and find

significant anomaly returns both in the stocks and synthetic forwards. However, the impact

of mispricing on options is considerably smaller, which suggests that there is indeed a certain

degree of segmentation between stock and option markets and that the option investors

predominantly trade against the stock mispricing. In line with these results, we also find

that call options written on overpriced stocks earn significantly lower raw returns, but this

effect becomes insignificant after delta-hedging. Therefore, although call options written

on an overpriced stock are mechanically overpriced, there is no evidence for an additional,

option-specific reaction to the anomaly signal. On the other hand, for put options, raw

returns are significantly higher and delta-hedged returns are significantly lower for more

overpriced stocks. This finding suggests that sophisticated option traders preferably buy put

positions to profit from inflated stock prices. We find corroborative results for the case of the

MAX anomaly (Bali, Cakici, and Whitelaw, 2011), which contrasts the former literature that

argues for an additional MAX-induced mispricing in option returns.

The anomaly-related price deviations between stock and option markets cannot be explained by

exposures to common risk factors and variations in variance risk premia. In addition, we find

that these deviations reasonably interact with arbitrage frictions as they are particularly large

for illiquid stocks and stocks with high idiosyncratic volatility, in line with Stambaugh, Yu, and

Yuan (2015). Intuitively, the higher these frictions are, the greater becomes the segmentation
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between stock and option markets, so that the option prices may detach more strongly

from their mechanically implied values through informed option trading. Underpinning this

view, we find that the documented price deviations are unlikely to represent exploitable

arbitrage opportunities for outside investors, since transaction costs are comparatively large,

in particular for highly mispriced stocks.

Related literature We contribute to the literature on the role of dumb and smart money

in boosting or mitigating anomalies. Edelen, Ince, and Kadlec (2016) argue that institutional

investors overall exacerbate stock return anomalies and Akbas et al. (2015) confirm this view

for mutual funds, but find that hedge funds actively trade against mispricings in stocks. We

complement the notion of smart money in mitigating anomalies, but focus on another type of

potentially smart investors, the option traders, and analyze their impact on returns of equity

options.

For the special case of Bali, Cakici, and Whitelaw’s (2011) MAX anomaly, Boyer and Vorkink

(2014) and Byun and Kim (2016) document anomalously low call option returns, which they

attribute to an additional mispricing in options with lottery-like payoffs. We find corroborative

results for this mispricing in raw option returns, but show that the patterns in delta-hedged

option returns rather suggest that option investors even trade against this anomaly. Related,

Hayunga et al. (2012) document a positive relation between stock mispricing and price

disequilibria between stock and option markets in a short sample around the short-sale ban

of 2008, but the quantitative impact of these price divergences on stock and option returns

remains unclear.

Other notable studies devoted to the reaction of options to stock mispricing are Battalio

and Schultz (2006) and Choy and Wei (2018), which focus on options written on Internet
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stocks during the dot-com bubble and stocks subject to attention-induced buying pressure,

respectively. Neither of these two studies, however, offers a simultaneous analysis of the purely

mechanical and the options-specific pricing response to the anomaly signals. Finally, Cao

et al. (2017) document predictability of hedged option returns by a variety of anomaly-related

stock characteristics, but do not analyze the effects in raw option returns. In addition, there is

virtual no predictability in stock returns within their sample, which prevents further insights

into the impact of stock mispricing on option returns.

Through the distinction between the mechanical and option-specific channel that could

lead to option mispricing, we also contribute to the literature about the different investor

sophistication in the option and stock market. Easley, O’Hara, and Srinivas (1998) show that

informed traders may prefer to trade in options because of their high leverage and better

liquidity and find that option trading volume predicts future stock prices. An extensive

literature is confirming this view.2 On the other hand, An et al. (2014) point out that

sophisticated investors may trade in either the stock or option market and document a

two-sided return predictability between stock and option markets. Muravyev, Pearson, and

Broussard (2013) challenge all these studies, as they find that option price changes track

stock price changes in the presence of looming arbitrage opportunities, which calls the

superiority of the option-implied information into question. We reconcile these contradictory

views, since we find evidence for the higher sophistication of option traders, but the resulting

difference between actual and option-implied synthetic stock prices does not result in arbitrage

opportunities.

From a conceptual point of view, our study also contributes to the literature that analyzes

2See Chakravarty, Gulen, and Mayhew (2004); Ofek, Richardson, and Whitelaw (2004); Cremers and
Weinbaum (2010); Roll, Schwartz, and Subrahmanyam (2010); Xing, Zhang, and Zhao (2010); Johnson and
So (2012); Mohrschladt and Schneider (2018), for example.

6



market integration through structural links between derivatives and underlying assets. For

instance, Kapadia and Pu (2012) document anomalous pricing discrepancies between equity

and credit markets as a result of limits of arbitrage. Choi and Kim (2018) analyze the

joint predictability of equity and bond returns and find large differences between estimated

risk premia in the two markets. These studies interpret stocks and bonds as derivatives

on the firm value to motivate their analyses. By contrast, we focus on options written on

mispriced stocks, which allows us to analyze the propagation of directly measurable stock

return anomalies to option returns.

The remainder of this paper is structured as follows. In Section 2, we derive a model-

free decomposition of anomalous stock returns. Section 3 describes our data sample, the

mispricing measure, and the empirical methodology. In Section 4, we analyze returns of

stocks and option portfolios in dependence of aggregate mispricing, whereas Section 5 covers

the MAX anomaly. The interactions between mispricing and arbitrage frictions are discussed

in Section 6. Section 7 concludes the paper.

2 Mispriced Stocks and the Option Market

Prominent asset pricing studies in the option market (Goyal and Saretto, 2009; Cao and

Han, 2013, for example) usually focus on delta-hedged returns of single options or straddle

portfolios, with the goal to identify premia in option returns beyond the effects induced by

the underlying stock. Likewise, we are interested in additional, option-specific effects in the

presence of stock mispricing. Since stock mispricing may or may not translate to option

mispricing purely mechanical, such an analysis is only meaningful when it is accompanied

by a comparison with the direct price implications for options written on mispriced stocks.
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To this end, we derive a model-free decomposition of stock returns, which enables us to

disentangle these two channels.

Specifically, consider a non-dividend paying stock with price St, and let Ct and Pt be prices

of call and put options, respectively, written on this stock with common maturity date T and

strike price X. In general, we can decompose the excess return of the stock into returns of

two option portfolios:

reS = ST − S0

S0
− r(0, T )

= FT − F0 + (ST − FT )− (S0 − F0)
S0

− r(0, T )

= FT − F0

S0
+
(
GT −G0

S0
− r(0, T )

)

= r̂F + r̂eG.

(1)

where r(t1, t2) = exp
(∫ t2
t1
r(u) du

)
− 1 denotes the risk-free interest earned between t1 and

t2, with r(t) being the short rate, Ft = Ct − Pt is the price of a synthetic forward, and

Gt = St−Ct +Pt corresponds to a so-called conversion trade, i.e., a long position in the stock

combined with a short synthetic forward. In words, the stock excess returns can be generically

decomposed in the return of a synthetic forward and the excess return of a conversion trade,

where both returns are defined relative to the stock price S0. These returns, r̂F and r̂eG, are

closely related to the leverage-adjusted option returns considered later on, where we scale

option portfolio gains by their stock exposure.

To capture the option-implied value of the given stock, we follow Ofek, Richardson, and

Whitelaw (2004) and define the synthetic stock price as

S∗
t := Ct − Pt + e−

∫ T

t
r(u)duX. (2)
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The option payout is naturally defined in terms of the observed stock price, so that S∗
T = ST .

If there are no frictions and differences of opinion, the standard put-call parity implies that

this equality also holds before option maturity: S∗
t ≡ St. In practice, however, there may be

deviations between these two prices, for example as a result of demand-dependent premia for

unhedgeable risk (cf. Gârleanu, Pedersen, and Poteshman, 2009).

For the special case of at-the-money-forward options, i.e., with X = S0(1 + r(0, T )), the

return decomposition given in Eq. (1) uncovers such potential deviations between actual and

synthetic stock prices:

reS = r̂F + r̂eG

= (S∗
T −X)− (S∗

0 − e−
∫ T

0 r(u)duX)
S0

+ X − (S0 − S∗
0 + e−

∫ T

0 r(u)duX)
S0

− r(0, T )

= S∗
T − S∗

0

S0
− r(0, T ) + S∗

0 − S0

S0
.

(3)

That is, the return of a synthetic forward formed from at-the-money-forward options precisely

captures the stock excess return as expected by the option traders. On the other hand, the

excess return of the conversion trade quantifies the different valuations of stock and option

traders for the stock.

These results hold without any assumption about the valuation of the given stock, but provide

additional insights in the light of stock mispricing. To fix ideas, suppose in the following

that the given stock is overpriced (the results for underpriced stocks are analogous, only

in the opposite direction). That is, the stock price S0 is higher than its (unobservable)

fundamental value V0 and, equivalently, the stock return rS is lower than the corresponding
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fair, risk-adequate return rV .3

If options were just purely redundant derivatives, such that S∗
t ≡ St, the conversion excess

return r̂eG would be zero and the synthetic forward would earn the same anomalously low

return as the stock,

r̂F = reS < reV . (4)

Alternatively, the signal provoking the stock overpricing could also result in a non-zero option

net demand and, in the presence of frictions, lead to a corresponding price impact on options

and the synthetic stock price.

Therefore, there are two additional cases to consider. On the one hand, option end-users

could trade in the direction of the anomaly signal, i.e., boost the anomaly by buying call

options, selling put options, or both. Consequently, the synthetic stock price would be even

more overpriced than the actual stock, and the synthetic forward would perform even worse

than the stock:

r̂F < reS < reV . (5)

In this case, the conversion trade would yield a positive excess return r̂eG = reS − r̂F > 0.

On the other hand, option traders could sell call options or buy put options to actively trade

against the stock anomaly, such that

reS < r̂F . (6)

As a result of the corrective influence of the option traders, the synthetic stock would actually

be less overpriced – or even correctly priced – such that the forward return exceeds the stock

excess return.

3For simplicity, we assume that the overpricing results in pathwise underperformance of the stock. This
assumption could be easily relaxed by considering expected, instead of realized returns in the remainder of
this section.

10



To sum up, forward returns indicate whether and to what extent the overpricing of the stock

is reflected in the option prices. In addition, conversion trades quantify the option-specific

response to the stock anomaly resulting from option trading in line with or against the

anomaly.

These results also have intuitive implications for returns of individual options. By the very

definition, naked options are levered positions in the option-implied synthetic stock. Therefore,

if the option market does not fully offset the stock overpricing, raw call returns are also

comparatively low and put returns are high. Furthermore, a delta-hedged option can be

interpreted as a levered position in a long-short portfolio of the synthetic and actual stock,

i.e., a short conversion trade. Therefore, delta-hedged option returns capture the impact of

the anomaly signal on option returns beyond the effect mechanically induced by the stock

mispricing, in line with the usual demand-based interpretation of delta-hedged option returns.

Consequently, if a call option is less (more) overpriced than implied by the stock mispricing,

the delta-hedged excess return will be positive (negative), and vice versa for put options.

Note that this final line of thought is not completely rigorous because the time-varying nature

of the option-embedded leverage and the dependence between the return denominator and

stock mispricing may counteract the hypothesized effects in the returns of individual options.

To alleviate these concerns, we present in Appendix A a simple model featuring options

written on an overpriced stock and find that the model-implied option returns behave in line

with our intuition.
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3 Data and Methodology

Our main data source is OptionMetrics’ IvyDB, which contains end-of-day bid and ask quotes

of all U.S. equity options and the underlying stocks, trading volumes and open interest, as well

as implied volatilities and option greeks. We consider only options written on common stocks

with standard settlement and expiration dates (i.e., the Friday before the third Saturday in

a month or the third Friday in a month after February 1, 2015). Following the literature

(e.g., Goyal and Saretto, 2009), we only keep option observations with a positive implied

volatility, a positive bid price, and a bid-ask spread larger than the minimum tick size.4 At

the initial portfolio formation date, we apply some further filter criteria, following Frazzini

and Pedersen (2012). We focus on stocks with a price between $5 and $1 000. In addition, we

keep only options with positive open interest and a bid-ask midpoint price within standard

arbitrage bounds. We also drop stock-months with dividend payments and options with a

time value below 5% of the options’ price to control for the early exercise possibility.5 Then,

for each stock in our sample, we select the pair of call and put options expiring in the next

month whose strike price is closest to the forward price of the stock, as long as the distance

between strike and forward price is at most 10% of the stock price.6 The final sample consists

of 317 269 observations between January 1996 and December 2017, with an average cross

section of 1 211 stocks per month.

4The minimum tick size for options written on stocks in the penny pilot program is $0.01 ($0.05) if the
option price is below (above) $3. For all other options, the minimum tick size is 0.05 ($0.10).

5We define the time value of an option as the difference between its midpoint price and the intrinsic value,
i.e., the payoff earned from an immediate exercise of the option.

6Analyses of standard at-the-money options as considered by Goyal and Saretto (2009), for example,
yield similar results as the ones reported in the following.
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Return calculation Following the literature (e.g., Goyal and Saretto, 2009), we consider

returns from the first trading day immediately following an expiration date until the next

expiration date. To form portfolios, we match the observations at the portfolio formation

date with monthly explanatory variables from the end of the preceding month.7 For a given

option O, we define the raw option gain as

πO(t0, tN) = OtN
− (1 + r(t0, tN))Ot0 , (7)

where Ot is the option’s time-t price and r(t0, tN ) is the risk-free interest earned between the

date t0 of portfolio formation and the expiration date tN . The terminal value of the option,

OtN
, is set to its payoff at maturity. Finally, we define raw and leverage-adjusted returns as

rO = πO(t0, tN)
Ot0

,

r̂O = πO(t0, tN)∣∣∣∆t0

∣∣∣St0 ,
(8)

where ∆t and St are the option’s delta and the price of the underlying stock in t, respectively.

Analogously, we define delta-hedged returns without (rdh) and with (r̂dh) leverage adjustment

by replacing the raw option gain πO in Eq. (8) with the corresponding delta-hedged gain as

defined by Bakshi and Kapadia (2003) and Cao and Han (2013):

πdh(t0, tN) = OtN
−Ot0 −

N−1∑
n=0

∆tn
(Stn+1 − Stn)−

N−1∑
n=0

r(tn, tn+1)(Otn
−∆tn

Stn). (9)

7Other specifications, such as holding options from the end of a month until the expiration date in the
month after next, yield qualitatively similar results.
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Identifying mispriced stocks As response to the myriads of cross-sectional stock return

anomalies documented in the literature, recent studies rather focus on aggregate mispricing

measures that diversify away the noise in the individual anomaly variables.8 Specifically, in

our analysis, we rely on the MISP measure of Stambaugh, Yu, and Yuan (2015), defined as

the average percentile rank from separate portfolio sorts on 11 prominent return anomalies.9

The included anomalies are well-known for long period of times, but result still in anomalous

returns.10 Furthermore, in Section 5, we analyze the specific response of option markets to

the MAX anomaly, recently documented by Bali, Cakici, and Whitelaw (2011).

Descriptive statistics Table 1 shows some descriptive statistics on our sample of stocks

and options. For each of the considered variables, we report the full-sample mean, standard

deviation, and the 5%, 50%, and 95% quantile. The first line shows results for MISP, our

main measure of stock mispricing. Given that MISP is defined as an average percentile rank,

the mean and median in our sample are indeed fairly close to 50%. On the other hand, the

5% and 95% quantiles are 28.77 and 72.46 in our sample, respectively. This finding highlights

that our sample does not contain the most extreme deciles analyzed in Stambaugh, Yu, and

Yuan (2015), presumably since there are no liquid options written on the corresponding

stocks. Similarly, the 95% quantile of MAX, i.e., the highest daily return within a month,

is 14.77%, which is substantially lower than the 23.6% average MAX for the highest MAX

decile portfolio reported by Bali, Cakici, and Whitelaw (2011). By implication, our results

are not driven by the most extremely mispriced stocks in the market.

8Some notable examples are Lewellen (2015), Stambaugh, Yu, and Yuan (2015), Green, Hand, and Zhang
(2017), Light, Maslov, and Rytchkov (2017), Stambaugh and Yuan (2017), and Engelberg, Mclean, and Pontiff
(2018).

9The MISP measure may be obtained at http://finance.wharton.upenn.edu/~stambaug/.
10A potential driver of this persistence may be biased analyst recommendations (cf. Guo, Li, and Wei,

2018).
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The remainder of Table 1 shows further summary statistics on stock and option characteristics,

as well as average returns of conversion trades and synthetic forwards. In particular, we find

a substantial variation in the embedded leverage, i.e., the product of the options’ absolute

delta, |∆|, and the stock price S relative to the option price O, despite our restriction on

at-the-money-forward options. Because of this variation in leverage, it matters whether we

scale delta-hedged gains with the option price O or with the stock exposure |∆|S. For this

reason, we consider both types of option returns in the following.

4 Empirical Analysis of Stock and Option Mispricing

4.1 Portfolio sorts

To analyze mispricing effects in returns of stocks and options, we form monthly-rebalanced

decile portfolios by sorting on the stock-specific MISP measure. The first column of Table 2

shows the resulting Fama and French (1993) alphas of the corresponding stock returns. In

line with Stambaugh, Yu, and Yuan (2015), we find decreasing alphas in the portfolio rank,

indicating that stocks with high MISP are indeed overpriced.

In the next column, we report the alphas of synthetic forwards constructed from the chosen

at-the-money-forward call and put options with one month to maturity and find a highly

significant long-short alpha of −1.34% per month. Thus, the stock mispricing is also present

in the option prices. On the other hand, we also find a negative long-short alpha of −0.11%

per month for conversion returns. That is, the option prices reflect roughly 0.11/1.34 = 8%

less mispricing than the underlying stocks, in line with the view that option investors actively

trade against the stock mispricing.
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It stands out that all conversion trade returns are significantly negative, which indicates

that synthetic stocks are on average cheaper than the actual stocks. This effect could result

from structural differences between actual and synthetic stock positions unrelated to stock

overpricing. In particular, if stocks provide additional benefits that are not provided by

synthetic stock positions, like voting rights (cf. Kalay, Karakaş, and Pant, 2014), synthetic

stock prices might be lower than the actual ones.11 Such effects tend to decrease conversion

returns and inflate the returns of synthetic forwards. In this case, synthetic forwards do not

exactly capture the option-implied valuation of the actual stock, but rather of a hypothetical

stock without these stock-specific benefits. Consequently, to measure the pure mispricing

effect, we would have to subtract the premium caused by these benefits from the conversion

returns and add it to the synthetic forward instead. For a simple ad-hoc analysis along these

lines, we report in the last two columns of Table 2 results for adjusted returns, where we

approximate the MISP-unrelated effect by the monthly mean conversion return. Under this

specification, adjusted conversion returns scatter around zero per construction and show a clear

pattern along the stock-specific MISP measure: positive anomalous returns for underpriced

stocks and negative returns for overpriced stocks. As a result, with this adjustment, also the

synthetic forward returns are lower in absolute values, i.e., less undervalued for the low-MISP

portfolios and less overvalued for the high-MISP portfolios.

11Another potential driver for lower synthetic stock prices may be short-sale constraints in the stock
market (Lamont and Thaler, 2003; Ofek, Richardson, and Whitelaw, 2004). This channel is obviously related
to potential differences in overpricing in stock and option markets, but there also may be an impact of
short-sale constraints independent from the overpricing captured by the MISP measure.
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Value weighted portfolios In the above analysis, we form equally weighted portfolios of

stocks, synthetic forwards, and conversions. The choice of equal weights is in line with most

of the empirical studies on option returns (see Goyal and Saretto, 2009; Cao and Han, 2013;

An et al., 2014, for example). But to rule out concerns about the overstatement of outliers,

we show in Table 3 results from a portfolio sort on MISP using value weighting. Specifically,

we consider both the standard stock-value weights, i.e., the market capitalization of the firms,

as well as the value of open interest, defined as the product of the option mid price and the

open interest. We calculate this measure for the chosen at-the-money-forward call and put

options separately and average them afterwards. Throughout, we find similar patterns in the

reported Fama and French (1993) alphas than for the case of equal weighting.

Risk adjustments Premia on anomaly variables are only anomalous if they cannot be

explained by compensation for systematic risk. In Table 2, we focus on the Fama and French

(1993) three-factor model, arguably still the benchmark model for the cross-section of stock

returns, but it may be inappropriate to capture the MISP premia in stocks and options. In

particular, synthetic forwards and conversion trades may be subject to other types of risks not

reflected in the size and value factor. To rule out these possibilities, we consider alternative

factor models in the following.

Our first choice is the factor model proposed by Fama and French (2018), consisting of the

standard Fama and French (1993) factors, the profitability and investment factors of Fama

and French (2015) and Carhart’s (1997) momentum factor. As shown in Table 4, the resulting

patterns in alphas of forwards and conversions are very similar to the case of the Fama

and French (1993) three-factor model and the corresponding long-short alphas are highly

significant as well.
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Higher order risks are a likely alternative explanation for additional premia in option returns.

Nevertheless, we also find significant alphas with respect to the factor model of Cremers,

Halling, and Weinbaum (2014), which includes the market return and two factors to capture

aggregate jump and volatility risk. Finally, we consider the 12-factor model of Vasquez (2017),

which consists of the standard size, value, and momentum factors, as well as higher-order

moments of the stock and option market return. Even this extensive factor model cannot

explain the MISP effect in conversion returns, whereas the alpha of long-short forward returns

is no longer significant. In this sense, the relative mispricing of stocks with respect to their

options is more robust than the mispricing of options relative to the fundamental value.

This result is not overly surprising given the special characteristics of conversion trades. By

construction, conversion trades correspond to a static portfolio with deterministic payoff,

so that returns are unlikely to be driven by future factor realizations. On the other hand,

the variation in synthetic forward and conversion returns could be driven by option-specific

frictions, which is why we take a closer look at the cross-section of the test portfolios in the

following.

Portfolio characteristics In Table 5, we report further characteristics of the MISP-sorted

portfolios to identify potential alternative explanations for the observed effects in returns. By

construction, MISP is increasing in the portfolio rank, but so does idiosyncratic volatility, as

defined by Ang et al. (2006), and several measures of stock illiquidity. In addition, both the

market cap of the firm and the dollar amount invested in the considered at-the-money-forward

options are lower for high-MISP stocks. In the last row, we consider the variance risk premium

as defined by Carr and Wu (2009) and also find a strong negative trend along the MISP

dimension.
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We analyze the impact of these variables on our decomposed anomaly returns in a regression

setup in Section 4.2. In addition, the variation in idiosyncratic volatility and illiquidity points

to a possible interaction between such arbitrage frictions and the mispricing in stock and

option markets, which we further discuss in Section 6.1.

Variance risk The pronounced heterogeneity in the variance risk premium across the MISP

portfolios could provide a risk-based explanation of the patterns in synthetic forwards and

conversion trades. As discussed by Bakshi and Kapadia (2003), option returns compensate for

variance risk with a premium that is proportional to the option vega. According to standard

theory, however, conversion trades have zero vega and therefore no exposure to variance risk.

But in reality, in a world with frictions, variance risk may still have an impact on conversion

returns. To investigate this hypothesis, we first form monthly-rebalanced decile portfolios

on the variance risk premium. Within each of these portfolios, we form ten conditional

MISP-portfolios, which we then aggregate across the variance risk portfolio rank. Table 6

shows that the resulting portfolios have almost no variation in the variance risk premium, but

MISP is still strongly increasing. For these test portfolios, we find again significantly negative

long-short alphas for stocks, forwards, and conversions, in line with our main analysis.

4.2 Regression analysis

To conclude the analysis of the components of anomaly returns, we show in Table 7 the

results from Fama-MacBeth regressions of synthetic forward and conversion trade returns.

First of all, we find a significantly negative impact of MISP on monthly forward and conversion

returns of −24.14 and −2.88 basis points per standard deviation increase, respectively. These

coefficients are quite low in comparison with the long-short returns documented in Table 2,
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but this is expected, since anomalies are usually more pronounced in the tails. Specifically,

the MISP difference between the lowest and highest MISP portfolio amounts to about four

standard deviations, and indeed, the estimated regression coefficients are about a quarter of

the long-short returns. As shown in specifications (2) and (4), these results are robust to

the inclusion of control variables. Specifically, we control for idiosyncratic volatility, Amihud

(2002) stock illiquidity, the relative option bid-ask spread (averaged over the at-the-money-

forward call and put option), firm size, the dollar value of open interest (also averaged over

the call and put option), and the fraction of call open interest relative to put open interest

as a summary measure of end-user demand in call and put options. Finally, we control for

the stock-specific variance risk premium and find a significantly positive effect in conversion

returns, which is surprising since conversions should have no exposure to variance risk by

construction. In any case, this effect does not interfere with the mispricing effect in conversion

returns, confirming our previous results on VRP-controlled portfolio sorts (see Table 6).

Finally, in a frictionless market, conversion excess returns should be zero, so that frictions

should amplify any existing deviation – positive or negative – between actual and synthetic

stock prices. To investigate this idea, we multiply all variables that are related to arbitrage

impediments with the sign of the conversion return to capture the impact of the respective

variable on the absolute magnitude of mispricing. In the corresponding regression model (5),

we find indeed that idiosyncratic volatility as well as stock and option illiquidity increase the

absolute conversion returns, and so does a smaller firm size. We also find a positive effect of

the absolute value of dollar open open interest, which could potentially result from a higher

end-user demand pressure.
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4.3 Separate effects in call and put options

If there are sophisticated option traders present in the market who are informed about the

stock overpricing, as suggested by the results in Table 2, they may choose to either sell call

options, buy put options, or both. The resulting demand pressure translates to premia in

expected option returns if option dealers are unable to hedge perfectly (cf. Gârleanu, Pedersen,

and Poteshman, 2009), which in turn result in the negative conversion trade returns present

in the data. In Table 8, we separately analyze returns of call and put options to uncover

such premia. For both option types, we report Fama and French (1993) alphas of raw and

delta-hedged returns, each relative to the option price and relative to the product of absolute

option delta and the stock price.

First of all, raw option returns exhibit patterns in line with the pure mechanical effect induced

by the overpricing of the underlying stocks: Call returns are decreasing in MISP and put

returns are increasing, irrespective of the chosen return denominator, with highly significant

long-short alphas. With delta-hedging, call returns are throughout insignificant and exhibit

no pattern along the MISP dimension. This finding suggests that call options are about

as overpriced as mechanically implied by the stock overpricing. In particular, there is no

evidence for an additional MISP-driven overpricing in call option returns. On the other hand,

we find a pronounced negative relation between stock overpricing and delta-hedged put option

returns, with significantly negative long-short alphas of −1.57% and −0.43% without and

with leverage adjustment, respectively. Therefore, put options reflect even less mispricing

than the underlying stock, which suggests that put options are the main channel through

which sophisticated option traders express their information about stock overpricing. This

finding is intuitive, since buying put options requires less margin capital than selling call
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options and is therefore preferred by funding-constrained option end-users.12

5 The MAX Anomaly in Option Returns

The analysis discussed in Section 4 is based on the 11 prominent stock anomalies selected

by Stambaugh, Yu, and Yuan (2015). Recently, Bali, Cakici, and Whitelaw (2011) have

documented that stocks with an extreme maximum daily return in the previous month

are overpriced, which suggests that investors prefer such lottery-like stocks. Importantly,

Byun and Kim (2016) find that call options written on such stocks strongly underperform

comparable options on non-lottery stocks. Related, Boyer and Vorkink (2014) find a negative

effect of option-individual total skewness on expected option returns to maturity. Contrasting

our results that option traders are informed about mispricing, both studies argue that there

exists an additional lottery-driven anomaly in options beyond the mechanically induced effect

of the underlying stocks’ anomalous returns. But it stands out that neither of these studies

consider hedged returns to verify this claim,13 which motivates the following analysis of the

MAX effect in stocks, synthetic forwards and conversion trades.

Specifically, Table 9 shows results from a portfolio sort on MAX (i.e., the highest daily return

in the previous month).14 Similar to the case of the MISP effect (see Table 2), we find a

12Santa-Clara and Saretto (2009) argue that margin requirements and the associated margin calls have an
important impact on the profitability of strategies involving writing put positions, but a similar argument
applies to short call positions.

13Byun and Kim (2016) also document violations of the put-call parity to support a separate MAX effect
in call option returns. According to the model presented in Appendix A, however, the put-call parity needs
not to hold for mispriced stocks even when there is no additional mispricing in the option market.

14Alternative proxies like the second-highest return, an average over the highest n returns, or measures of
idiosyncratic volatility give similar results, see Table A3 in Appendix B. The specific patterns in forwards an
conversion with regard to the MAX effect are also robust to controlling for other risk factors, as shown in
Table A2.

22



significantly negative long-short Fama and French (1993) stock return alpha of −1.28% per

month, which can be decomposed in negative returns of synthetic forwards and conversion

trades. The average long-short return of synthetic forwards generates only about 90% of

the average MAX effect in stock returns, which indicates that the option market is slightly

less prone to MAX-induced overpricing than to the anomalies summarized in the MISP

measure.15 Finally, the significantly negative long-short alpha in conversion trades indicates

that the synthetic stock price is significantly lower than the actual stock price, contrasting

the additional MAX-induced overpricing of call options proposed by Byun and Kim (2016).

To make the latter argument more explicit, we also consider call and put option returns in

Table 10. The first two columns show a clear negative pattern along the MAX dimension for

both standard and leverage-adjusted call option returns. This finding is completely in line

with Byun and Kim (2016). In addition, we document a strong positive trend in put options.

These two effects could either result from the mechanical link to the underlying stock return

or from an excess long (short) demand in call (put) options because of their lottery-like

characteristics. But in the latter case, the effect should also be present in delta-hedged option

returns. Table 10 clearly shows that this is not the case. All delta-hedged returns are either

insignificant or significant with a different sign than the raw option returns. Such a change of

sign contradicts an additional, option-specific overpricing, but is perfectly in line with the

notion of better informed option traders. In summary, the analysis of the MAX anomaly

confirms the result for the MISP anomaly that options written on mispriced stocks may be

mispriced as well, but to a lesser degree as mechanically induced by the stock mispricing.

15Lin and Liu (2018) find that the MAX effect in the stock market is driven by the demand of individual
retail investors. Such individuals are unlikely to play an important role in the option market, such that
the aggregate information on the MAX anomaly embedded in stock and option prices may be much more
different than in the case of the MISP anomaly.
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6 Arbitrage Frictions

The persistence of anomalies in prices and returns is puzzling at first sight, but could well

be explained with specific risks and frictions that deter arbitrage trades. In Section 6.1,

we discuss the relation between such arbitrage frictions and mispricing in stock and option

markets. Closely related, in Section 6.2, we show that potential arbitrage strategies implied

by the results presented in Section 4 are not feasible in practice because of high trading costs.

6.1 Mispricing and arbitrage frictions

Mispricing can only occur in equilibrium if there are substantial frictions that impede arbitrage

mechanisms. Shleifer and Vishny (1997) point out that arbitrageurs care about idiosyncratic

volatility since they are likely to hold not perfectly diversified portfolios. Related, Stambaugh,

Yu, and Yuan (2015) document that a long-short portfolio of overpriced and underpriced

stocks, as indicated by their MISP measure, realizes lower returns with increasing idiosyncratic

volatility, i.e., higher arbitrage risk. That is, the potential overpricing in a high-MISP stock

only results in low returns when arbitrageurs are reluctant to trade against it. If we extend

this mindset to include the option market, there emerge two additional channels through

which arbitrage impediments influence the pricing effects of anomaly signals. First, only if

there are specific risks and frictions that deter arbitrage trades between the stock and option

markets, then these markets can be segmented, so that market-specific trading behavior may

lead to deviations between stock prices and their option-implied counterparts, as captured by

conversion trades. Second, even if direct arbitrage trades between the stock and option market

were infeasible, mispriced options would still represent lucrative investment opportunities
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with the outlook for high excess returns. As a result, the mispricing in options captured by

synthetic forwards can only persist when there are also frictions within the option market,

impeding the profitability of long-short option strategies. In the following, we analyze these

channels for two different dimensions of arbitrage frictions: Idiosyncratic volatility as a

measure of arbitrage risk and stock illiquidity, which constitutes an important friction faced

by arbitrageurs.

We form monthly quintile portfolios on idiosyncratic volatility, and within each of these

portfolios, we form five portfolios on MISP. Table 11 shows Fama and French (1993) alphas

of the resulting 25 portfolios. Panel A corresponds to the forward returns, Panel B contains

results for conversions. For both components of stock returns, we find in each idiosyncratic

volatility portfolio significantly negative MISP long-short alphas. Importantly, these alphas

are overall decreasing in idiosyncratic volatility. Arbitrage risk therefore results in a more

pronounced overpricing in both synthetic forwards and conversion trades. By implication,

their sum, i.e., the mispricing in excess stock return is also stronger for higher levels of

idiosyncratic volatility, in line with Stambaugh, Yu, and Yuan (2015).

Table 12 shows analogous results for double-sorted portfolios on Amihud (2002) stock

illiquidity and MISP. Consistent with our intuition, we find signifcantly negative MISP

long-short conversion alphas that are larger in magnitude for higher levels of illiquidity.

On the other hand, long-short forward returns are also significantly negative, but they

exhibit no systematic variation across the liquidity portfolios. For the most illiquid stocks,

however, synthetic forwards even show no more signs of MISP-induced overpricing, whereas

the respective conversion trade return peaks at −0.17%. A potential explanation for this

finding could be that higher stock illiquidity mainly acts as arbitrage friction between stock

and option markets without direct implications for the option market itself, so that synthetic
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and actual stock prices can deviate more drastically.

To conclude this analysis of the interaction between arbitrage frictions and mispricing, we

show in Table 13 the results from Fama-MacBeth regressions of forward and conversion returns

on MISP, idiosyncratic volatility, stock illiquidity, and their interactions. We standardize

these variables such that they have a full-sample mean of zero and unit standard deviation.

As a result, the estimated coefficients of MISP, idiosyncratic volatility, and stock illiquidity

quantify the marginal effect of the respective variables given that the others are equal to

their respective mean.

The regression results are overall in line with the previous findings from the double-sorted

portfolios. In the case of synthetic forwards, a higher idiosyncratic volatility leads to a larger

mispricing premia, whereas stock illiquidity has no effect. For conversion trades, on the

other hand, both two-way interactions and also the three-way interaction between mispricing,

idiosyncratic volatility, and mispricing are highly significant. Therefore, the negative impact

of MISP on conversion returns is particularly strong for more pronounced arbitrage frictions.

6.2 Trading against stock mispricing

Given the highly significant negative long-short returns for conversion trades, it is a natural

question to ask whether this finding gives rise to a profitable arbitrage strategy. As we

show in the following, this is not the case, since transaction costs of conversion trades are

comparatively large.

To earn the premium resulting from the overpricing of stocks relative to the associated options,

one could combine a short stock position with a long position in a synthetic stock, forming a

reverse conversion trade. With transaction costs, this strategy generates the following excess
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return:

rrev = HT −H0(1 + r)
H0

, (10)

H0 = Cask
0 − P bid

0 − Sbid
0 , (11)

HT = −K, (12)

where Cask
0 , P bid

0 , and Sbid
0 are the respective bid or ask prices of the at-the-money-forward

call and put option and the stock and K is the strike price of the options. Note that H0 < 0,

so that this strategy corresponds to a risk-free loan.16

Importantly, our data set only contains quoted spreads, which are likely to be substantially

larger than the effective spreads relevant for the arbitrage-seeking investor. In particular,

Mayhew (2002) and De Fontnouvelle, Fishe, and Harris (2003) show that the ratio between

effective and quoted spreads is for equity options less than 50%. Therefore, we follow Cao

et al. (2017) and assume that the effective spreads are a fixed fraction δ of the quoted spread.

In Table 14, we report average reverse conversion returns of MISP-sorted portfolios with

transaction costs. The first column shows results for δ = 0%, which corresponds to the case

of zero transaction costs as in our main analysis, leading to an average long-short return of

0.10% per month.17 The remaining columns show analogous results for different values of δ.

Whereas there is still a small arbitrage profit for δ = 10%, a proportion of 15% is roughly the

break-even point. For higher, probably more realistic levels of effective spreads, the long-short

16In this analysis, we abstract from stock borrowing costs, which are known to diminish the returns to
short selling (Muravyev, Pearson, and Pollet, 2018). In particular, such borrowing costs render many of the
seeming arbitrage opportunities based on stock overpricing unprofitable (see also Hu, 2018).

17The minor deviations between Table 14 and Table 2 result from the different scaling of the portfolio
gains. In our main analysis, we focus on the separation of anomaly returns and scale portfolio gains therefore
with the stock price, whereas the returns considered here are defined relative to the actual capital invested in
the strategy.
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returns are significantly negative. Thus, although we find evidence for overpricing of stocks

relative to the option-implied stock value, this difference can hardly be exploited by a simple

arbitrage strategy.

Nevertheless, there are options in the sample where the arbitrage strategy would be profitable

even under the quoted spreads. Such an arbitrage strategy exists only if the actual bid-ask

interval of the stock is disjoint from the bid-ask interval of the synthetic stock position. Since

we excluded stock-months with dividend payments from our sample, we define synthetic ask

and bid quotes of a given stock as18

S̃ask
t = Cask

t − P bid
t + PV (K), (13)

S̃bid
t = Cbid

t − P ask
t + PV (K), (14)

where PV (K) is the discounted strike price.

As a first result, we find that in over 85% of observations in the full sample, the actual stock

bid-ask interval is enclosed by the synthetic one. By this means, traders in the synthetic

stocks face inferior prices in comparison with the actual stock prices, confirming the results

from Hu (2018). Furthermore, in over 97% of the cases, the bid-ask intervals are overlapping,

such that there is no arbitrage opportunity present according to the quoted spreads. On the

other hand, there are some arbitrage opportunities, even when evaluated with quoted spreads.

In Fig. 1, we provide a more detailed insight into the distribution of arbitrage opportunities

within the MISP-sorted portfolios.

For the lowest- and highest-MISP portfolios, the share of arbitrage opportunities is the largest

with over 3.5% of the observations. But whereas for low MISP values both types of arbitrage
18Since we exclude dividends and focus on options with not too low time value, we do not incorporate the

possibility for early exercise here. See Battalio and Schultz (2006) and Muravyev, Pearson, and Broussard
(2013) for alternative definitions that incorporate the early exercise premium.
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opportunities – stock underpricing or overpricing relative to the synthetic stock – occur with

almost equal proportion, the seeming arbitrage opportunities in high-MISP stocks mostly

arise from relative overpricing of the stock, in line with our previous analyses.

7 Conclusion

In this paper, we analyze the specific response of option markets to stock mispricing. Since

there are frictions in and between stock and option markets, option prices may contain demand-

driven premia that reflect the view of option traders and are, in particular, informative about

their knowledge of stock return anomalies. Based on a model-free decomposition of stock

returns into the returns of synthetic forwards and conversion trades, we are able to separate

the mechanically induced effect of stock mispricing on option prices from the price impact

caused by option investors. We find that options written on mispriced stocks are mispriced

as well, but to a lesser degree, which is in line with the intuition that option traders are

comparatively more sophisticated. In particular, we document anomalous raw option returns

caused by stock mispricing; an effect that is not present – or even reversed – in delta-

hedged option returns. The structure in raw and delta-hedged option returns suggests that

sophisticated option traders predominantly choose to buy put options to trade against the

stock mispricing. Finally, consistent with the view that higher arbitrage frictions lead to a

stronger segmentation between stock and option markets, we find that larger idiosyncratic

volatility and stock illiquidity are associated with a stronger mispricing-related deviation

between synthetic and actual stock prices.
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A Theoretical Model

In this section, we propose a simple, tractable model of overpriced stocks and option writing
to confirm the intuition from our model-free anomaly decomposition. We consider a market
with a fixed interest rate r and two stocks. The stocks have prices S and U and the same
fundamental value V , which follows a geometric Brownian motion:

dVt
Vt

= µ dt+ σ dWt. (15)

There is an exogenous overpricing of stock S, which decays until t = T :

St =

e
q(T−t)Vt, for 0 ≤ t < T,

Vt, for t > T,
(16)

for some q > 0. We make the implicit assumption that there are certain frictions allowing
the obvious arbitrage opportunity to persist. In addition, although option traders are able
to trade in both stocks to hedge their option positions, their trading activity has no price
impact on the stocks.
Restricting the market to just the stock U , this setting corresponds to the standard Black-
Merton-Scholes (BMS) of Black and Scholes (1973) and Merton (1973), such that a European
call (or put) option written on the correctly priced stock U with maturity date T and strike
price K has the price

OU,K
t = OBMS(Ut, K, T − t), (17)

where OU,K
t is the option price and OBMS(U,K, τ) is the BMS pricing formula for a call (or

put) option with stock price U , strike price K, and time to maturity τ .
The value of an option written on the mispriced stock S depends on the information of the
option traders about the mispricing. Specifically, we assume that the option traders perceive
the true value of stock S as

S̃t = e−αq(T−t)St = e(1−α)q(T−t)Vt, (18)

for some fixed α ≤ 1, which captures the option traders’ view on the stock anomaly. In
particular, if α = 1, the option traders completely recognize the overpricing of the stock.
For α ∈ (0, 1), they are partially aware of the mispricing, whereas α = 0 corresponds to the
trivial case S̃t = St. Finally, for α < 0, the perceived stock price S̃t is even higher than the
actual stock price.
We further assume that the option traders choose to incorporate their private view on the
true stock price also in the option prices. As a result, the option-implied synthetic stock
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price corresponds to the perceived true stock value, S∗
t = S̃t, and the prices OS,K

t of options
written on S contain an adjustment for the perceived mispricing:19

OS,K
t = OBMS(S̃t, K, T − t). (19)

Consequently, in line with the model-free arguments given in Section 2, the excess returns of
synthetic forwards capture the proportion of the stock overpricing that is reflected in option
prices, whereas conversion trades quantify the specific reaction of the option traders to the
anomaly:

r̂F ≈ µT − (1− α)qT, (20)
r̂eG ≈ −αqT. (21)

In addition, if α 6= 0, there is a deviation between the stock price S and the one perceived
by the option traders, which results in a violation of standard no-arbitrage relations in the
option market:

CS,K
t − P S,K

t − St + e−r(T−t)K = St
(
e−αq(T−t) − 1

)
6= 0 (22)

Note that this result applies to the standard put-call parity, i.e., as evaluated by an (unin-
formed) econometrician. From the perspective of an informed option trader, put-call parity
does indeed hold, as both call and put options are consistently priced for the perceived correct
stock price S̃t.
As long as α < 1, the options are mispriced as well. Call (put) options have a positive
(negative) exposure to their underlying stock, so that stock overpricing increases call and
decreases put option prices, with intuitive implications for raw option returns:

re
C

S < re
C

U , (23)
re
P

S > re
P

U , (24)

where reO = OT −O0
O0
− r(0, T ) is the return to maturity of option O in excess of the risk-free

rate r(0, T ). While these results are rather immediate, the impact of the mispricing on
delta-hedged option returns is not as clear, as stock overpricing simultaneously influences
option prices, stock prices, and deltas. Therefore, in the following, we analyze raw and
delta-hedged option returns in a simulation study.

19Given the model structure, options on S can be hedged with the correctly priced stock U . However, if
the option traders do not fully recognize the mispricing in S, they estimate a wrong hedge ratio between the
two stocks, such that the options are still mispriced, consistent with the given pricing formula.
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Simulation study We simulate 10 000 paths of the fundamental value V and the associated
stock prices S and U based on Eqs. (15) and (16), assuming a mispricing of q = 1% that
decays over one month.20 The risk-free interest rate is set to r = 3% per year, the expected
stock return is µ = 8% and the volatility equals σ = 0.2.
Table A1 shows the resulting average returns for some benchmark scenarios. The first three
cases cover completely informed (α = 1.0), partially informed (α = 0.5), and completely
uninformed (α = 0.0) option traders. The last two specifications, α = −1.0 and α = −0.5,
correspond to additional overpricing in the option market. First of all, the simulation results
are in line with the theoretically derived relations for synthetic forwards, conversion trades,
and raw option returns. In particular, raw call (put) options written on the overpriced
stock S earn lower (higher) returns as the respective options written on the correctly priced
stock U , and this difference becomes smaller in magnitude for higher levels of option trader
sophistication α. For α < 0, options are even more mispriced, so that delta-hedged call
(put) options also earn negative (positive) returns.21 When option traders are aware of the
mispricing, i.e., for α > 0, raw and delta-hedged option returns have different signs, reflecting
the lower degree of stock mispricing embedded in the options.

20This choice corresponds to a monthly return difference of about 1% between the overpriced and correctly-
priced stocks, in line with the empirical results reported by Stambaugh, Yu, and Yuan (2015), for example.

21We consider delta-hedged option returns with time-discrete rebalancing of the hedging position, closely
following the definitions given in Section 3.
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Table A1: Simulation results

This table shows simulated stock and option returns, as implied by the theoretical model outlined in
Appendix A. First, we simulate 10 000 paths of the correctly priced stock U and the overpriced stock S
over one month and calculate the corresponding average excess returns. Based on these sample paths, we
calculate average raw and delta-hedged returns of at-the-money-forward call and put options with one month
to maturity. Finally, we combine the returns of calls, puts, and the stocks, to form returns of synthetic
forwards and conversion trades. All returns are given in monthly percent.

Excess returns Delta-hedged returns

Specification Stock Forward Call Put Conversion Call Put

α = 1.0
Stock U 0.4∗ 0.4∗ 33.9∗ −26.1∗ 0.0 0.0 0.0
Stock S −0.6∗ 0.4∗ 33.9∗ −26.1∗ −1.0∗ 93.8∗ −57.5∗

Difference −1.0∗ 0.0 0.0 0.0 −1.0∗ 93.8∗ −57.5∗

α = 0.5
Stock U 0.4∗ 0.4∗ 33.9∗ −26.1∗ 0.0 0.0 0.0
Stock S −0.6∗ −0.1∗ −6.1∗ 10.3∗ −0.5∗ 36.0∗ −36.4∗

Difference −1.0∗ −0.5∗ −40.0∗ 36.4∗ −0.5∗ 36.0∗ −36.4∗

α = 0.0
Stock U 0.4∗ 0.4∗ 33.9∗ −26.1∗ 0.0 0.0 0.0
Stock S −0.6∗ −0.6∗ −31.0∗ 74.2∗ 0.0 −0.1 0.5
Difference −1.0∗ −1.0∗ −64.9∗ 100.3∗ 0.0 −0.1 0.5

α = −0.5
Stock U 0.4∗ 0.4∗ 33.9∗ −26.1∗ 0.0 0.0 0.0
Stock S −0.6∗ −1.1∗ −47.1∗ 192.0∗ 0.5∗ −23.5∗ 68.7∗

Difference −1.0∗ −1.5∗ −81.0∗ 218.1∗ 0.5∗ −23.5∗ 68.7∗

α = −1.0
Stock U 0.4∗ 0.4∗ 33.9∗ −26.1∗ 0.0 0.0 0.0
Stock S −0.6∗ −1.6∗ −58.1∗ 421.5∗ 1.0∗ −39.3∗ 201.6∗

Difference −1.0∗ −2.0∗ −92.0∗ 447.6∗ 1.0∗ −39.3∗ 201.6∗

∗p < 0.01
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B Further Analyses

In the following, we report additional results on the MAX anomaly in option returns:
• Table A2: MAX alphas based on alternative factor models

• Table A3: Alternative MAX measures and option portfolio returns
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Table A2: MAX alphas based on alternative factor models

This table shows alphas of portfolios formed on the MAX measure of Bali, Cakici, and Whitelaw (2011), i.e.,
the highest daily return in the preceding month. For each stock portfolio, we consider the respective returns
of synthetic forwards and conversion trades constructed from the corresponding at-the-money-forward call
and put options with one month to maturity. In the FF6 specification, we consider the six-factor model of
Fama and French (2018), i.e., the standard Fama and French (1993) factors, along with the profitability and
investment factors of Fama and French (2015) and Carhart’s (1997) momentum factor. The CHW alphas
correspond to the factor model of Cremers, Halling, and Weinbaum (2014), which consists of the market
return as well as a jump and a volatility risk factor. The final specification incorporates the three Fama and
French (1993) factors, Carhart’s (1997) momentum factor, as well as higher moments of stock and option
market returns, as proposed by Vasquez (2017). All alphas are given in monthly percent, significances are
based on Newey and West (1987) standard errors.

Forwards Conversions

Portfolio FF6 CHW Vasquez FF6 CHW Vasquez

1 (low) 0.14 0.30∗∗∗ 0.24 −0.06∗∗∗ −0.06∗∗∗ −0.05∗∗∗

2 −0.03 0.11 0.14 −0.06∗∗∗ −0.07∗∗∗ −0.06∗∗∗

3 0.04 0.14 0.11 −0.06∗∗∗ −0.07∗∗∗ −0.07∗∗∗

4 0.02 0.08 0.01 −0.06∗∗∗ −0.07∗∗∗ −0.07∗∗∗

5 0.05 0.03 −0.04 −0.07∗∗∗ −0.08∗∗∗ −0.08∗∗∗

6 0.15 0.12 0.16 −0.08∗∗∗ −0.09∗∗∗ −0.08∗∗∗

7 0.03 −0.13 −0.22 −0.10∗∗∗ −0.10∗∗∗ −0.08∗∗∗

8 −0.11 −0.30∗∗ 0.12 −0.11∗∗∗ −0.11∗∗∗ −0.13∗∗∗

9 −0.31∗∗ −0.56∗∗∗ −0.48 −0.15∗∗∗ −0.16∗∗∗ −0.16∗∗∗

10 (high) −0.41∗∗ −0.86∗∗∗ −0.61 −0.19∗∗∗ −0.20∗∗∗ −0.17∗∗∗

10–1 −0.55∗∗∗ −1.16∗∗∗ −0.85 −0.13∗∗∗ −0.13∗∗∗ −0.12∗∗∗

(−2.65) (−4.48) (−1.40) (−10.03) (−9.87) (−6.45)
∗∗∗

p < 0.01; ∗∗
p < 0.05; ∗

p < 0.1
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Table A3: Alternative MAX measures and option portfolio returns

This table shows Fama and French (1993) alphas of long-short conversion and forward returns based on a
decile portfolio sort on several alternative MAX measures. For reference, the first line corresponds to the
original MAX measure of Bali, Cakici, and Whitelaw (2011), i.e., the highest daily return in the preceding
month. As more robust alternative, we consider the second-highest return in the next specification. In the
last two specifications, we define alternative MAX measures as the average of the five highest return in the
preceding month and the then highest returns in the last three months, respectively. For each specification,
we report the average difference in conversion and forward returns between the highest and lowest decile
portfolio. All alphas are given in monthly percent, significances are based on Newey and West (1987) standard
errors.

Long-short alphas

MAX specification Conversions Forwards

Highest return in last month (baseline) −0.13∗∗∗ −1.15∗∗∗

(−10.18) (−4.55)
Second-highest return in last month −0.15∗∗∗ −1.12∗∗∗

(−9.82) (−3.57)
Average of five highest returns in last month −0.15∗∗∗ −1.21∗∗∗

(−9.99) (−3.73)
Average of ten highest returns in last three months −0.18∗∗∗ −1.24∗∗∗

(−10.16) (−3.69)
∗∗∗

p < 0.01; ∗∗
p < 0.05; ∗

p < 0.1
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Figures

Figure 1: Actual and synthetic bid-ask intervals

This figure visualizes potential arbitrage opportunities between actual and synthetic stock positions in
monthly-rebalanced decile portfolios formed on the stock-specific MISP measure of Stambaugh, Yu, and Yuan
(2015). For each stock in the portfolios, we calculate the bid-ask interval corresponding to a synthetic stock
position constructed from at-the-money-forward call and put options with one month to maturity. We report
the average fraction of observations per portfolio where the synthetic interval lies strictly below (orange area)
and strictly above (blue area) the actual bid-ask interval, respectively.
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Table 1: Descriptive statistics

This table shows descriptive statistics of our main data set. For each variable, we show the full-sample
mean, standard deviation, and the 5%, 50% (median), and 95% quantile. The first three lines show our main
explanatory variables: the mispricing measure of Stambaugh, Yu, and Yuan (2015) (MISP), Bali, Cakici, and
Whitelaw’s (2011) MAX measure, as well as idiosyncratic volatility as defined by Ang et al. (2006). On the
stock-level, we analyze the firms’ size, relative bid-ask spreads and the monthly excess return. For call and
put options, we consider the value of open interest (given by the product of open interest and the options’
mid price), the bid-ask spread relative to the options’ price, as well as embedded leverage (absolute value of
delta times stock prices over option price, following Frazzini and Pedersen (2012)). Finally, we include the
options’ excess and daily delta-hedged return, both relative to the options’ price and in a leverage-adjusted
version, i.e., relative to the product of absolute delta and the stock price. In addition, in the last two lines,
we report statistics on the excess returns of conversion trades and synthetic forwards.

Variable Mean Std. dev. 5% Median 95%

Explanatory variables
MISP 49.31 13.25 28.77 48.58 72.46
MAX (%) 5.90 5.72 1.66 4.47 14.77
IVOL (%) 2.06 1.55 0.65 1.67 4.74

Stocks
Firm size ($ billion) 8.14 24.30 0.26 1.93 32.12
Relative bid-ask spread (%) 0.32 0.65 0.01 0.09 1.56
Excess return (%) 0.65 13.64 −20.68 0.81 20.94

Call options
Value of open interest ($1000) 2.15 8.50 0.01 0.30 9.25
Relative bid-ask spread (%) 23.46 24.58 3.57 15.38 70.59
Embedded leverage 13.40 7.05 5.59 11.76 26.67
Excess return (%) 7.53 171.08 −100.41 −77.48 321.41
Excess return, deleveraged (%) 0.39 16.13 −15.31 −4.27 28.48
Delta-hedged return (%) −1.76 62.26 −70.68 −7.26 82.98
Delta-hedged return, deleveraged (%) −0.22 5.07 −6.48 −0.59 7.12

Put options
Value of open interest ($1000) 1.41 5.99 0.00 0.15 6.21
Relative bid-ask spread (%) 25.58 26.93 3.77 16.39 80.00
Embedded leverage 12.45 6.95 4.59 10.87 25.58
Excess return (%) −13.18 158.14 −100.42 −100.00 287.61
Excess return, deleveraged (%) −1.18 16.98 −18.00 −5.57 30.76
Delta-hedged return (%) −3.44 60.77 −73.40 −8.79 81.14
Delta-hedged return, deleveraged (%) −0.45 5.99 −8.02 −0.75 7.90

Option portfolios
Conversion excess return (bps) −8.79 63.42 −95.57 −3.53 62.03
Forwards excess return (%) 0.73 13.64 −20.54 0.87 21.08
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Table 2: Mispricing in stocks and option portfolios

This table shows Fama and French (1993) alphas of portfolios formed on the stock-specific MISP measure
of Stambaugh, Yu, and Yuan (2015). For each stock portfolio, we consider the respective stock returns,
as well as the returns of synthetic forwards and conversion trades constructed from the corresponding
at-the-money-forward call and put options with one month to maturity. All alphas are given in monthly
percent, significances are based on Newey and West (1987) standard errors.

Portfolio Stocks Forwards Conversions Forwards (adj.) Conversions (adj.)

1 (low) 0.27∗∗ 0.33∗∗∗ −0.06∗∗∗ 0.24∗∗ 0.03∗∗∗

2 0.23∗∗ 0.29∗∗∗ −0.06∗∗∗ 0.20∗∗ 0.03∗∗∗

3 0.09 0.16∗ −0.07∗∗∗ 0.07 0.02∗∗∗

4 0.12 0.18∗ −0.06∗∗∗ 0.09 0.03∗∗∗

5 0.00 0.07 −0.07∗∗∗ −0.01 0.01∗∗∗

6 0.00 0.08 −0.08∗∗∗ −0.01 0.01∗∗

7 −0.07 0.01 −0.08∗∗∗ −0.08 0.01∗

8 −0.30∗∗ −0.20 −0.10∗∗∗ −0.29∗∗ −0.01∗∗

9 −0.50∗∗∗ −0.37∗∗ −0.13∗∗∗ −0.46∗∗∗ −0.04∗∗∗

10 (high) −1.18∗∗∗ −1.01∗∗∗ −0.17∗∗∗ −1.09∗∗∗ −0.08∗∗∗

10–1 −1.45∗∗∗ −1.34∗∗∗ −0.11∗∗∗ −1.34∗∗∗ −0.11∗∗∗

(−5.70) (−5.21) (−9.15) (−5.21) (−9.15)
∗∗∗

p < 0.01; ∗∗
p < 0.05; ∗

p < 0.1
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Table 3: Value-weighted portfolios formed on stock mispricing

This table shows Fama and French (1993) alphas of portfolios formed on the stock-specific MISP measure of
Stambaugh, Yu, and Yuan (2015). For each portfolio, we consider the respective stock returns, as well as
the returns of synthetic forwards and conversion trades constructed from the corresponding at-the-money-
forward call and put options with one month to maturity. The first three columns correspond to standard
value-weighted portfolios, i.e., to weighting with market capitalization of the stocks. The remaining columns
show results from weighting by the average value of open interest of the considered call and put options. All
alphas are given in monthly percent, significances are based on Newey and West (1987) standard errors.

Market capitalization Value of open interest

Stocks Forwards Conversions Stocks Forwards Conversions

1 (low) 0.25∗∗ 0.27∗∗ −0.02∗∗ 0.41∗∗ 0.44∗∗ −0.02∗∗∗

2 0.10 0.13 −0.03∗∗∗ 0.21 0.23 −0.03∗∗∗

3 0.13 0.16 −0.03∗∗∗ 0.27 0.31 −0.03∗∗∗

4 0.32∗∗∗ 0.34∗∗∗ −0.02∗∗∗ 0.42∗∗ 0.46∗∗ −0.03∗∗∗

5 0.02 0.06 −0.04∗∗∗ −0.04 0.02 −0.06∗∗∗

6 −0.07 −0.03 −0.04∗∗∗ −0.20 −0.13 −0.07∗∗∗

7 −0.10 −0.06 −0.04∗∗∗ −0.24 −0.16 −0.08∗∗∗

8 −0.23 −0.17 −0.06∗∗∗ −0.43 −0.32 −0.11∗∗∗

9 −0.27 −0.21 −0.06∗∗∗ −1.03∗∗∗ −0.91∗∗∗ −0.12∗∗∗

10 (high) −1.11∗∗∗ −1.02∗∗∗ −0.10∗∗∗ −1.46∗∗∗ −1.27∗∗∗ −0.19∗∗∗

10–1 −1.37∗∗∗ −1.29∗∗∗ −0.08∗∗∗ −1.87∗∗∗ −1.71∗∗∗ −0.17∗∗∗

(−5.02) (−4.74) (−6.07) (−3.41) (−3.11) (−8.71)
∗∗∗

p < 0.01; ∗∗
p < 0.05; ∗

p < 0.1
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Table 4: MISP alphas based on other factor models

This table shows alphas of portfolios formed on the stock-specific MISP measure of Stambaugh, Yu, and
Yuan (2015). For each stock portfolio, we consider the respective returns of synthetic forwards and conversion
trades constructed from the corresponding at-the-money-forward call and put options with one month to
maturity. In the FF6 specification, we consider the six-factor model of Fama and French (2018), i.e., the
standard Fama and French (1993) factors, along with the profitability and investment factors of Fama and
French (2015) and Carhart’s (1997) momentum factor. The CHW alphas correspond to the factor model
of Cremers, Halling, and Weinbaum (2014), which consists of the market return as well as a jump and a
volatility risk factor. The final specification incorporates the three Fama and French (1993) factors, Carhart’s
(1997) momentum factor, as well as higher moments of stock and option market returns, as proposed by
Vasquez (2017). All alphas are given in monthly percent, significances are based on Newey and West (1987)
standard errors.

Forwards Conversions

Portfolio FF6 CHW Vasquez FF6 CHW Vasquez

1 (low) 0.14 0.33∗∗∗ −0.10 −0.06∗∗∗ −0.06∗∗∗ −0.06∗∗∗

2 0.17 0.30∗∗∗ 0.24 −0.06∗∗∗ −0.06∗∗∗ −0.06∗∗∗

3 0.09 0.17∗ 0.05 −0.06∗∗∗ −0.07∗∗∗ −0.06∗∗∗

4 0.14 0.23∗∗ 0.16 −0.06∗∗∗ −0.06∗∗∗ −0.06∗∗∗

5 0.05 0.11 0.04 −0.07∗∗∗ −0.08∗∗∗ −0.08∗∗∗

6 0.14 0.10 0.19 −0.07∗∗∗ −0.08∗∗∗ −0.09∗∗∗

7 0.13 0.04 0.03 −0.07∗∗∗ −0.08∗∗∗ −0.08∗∗∗

8 −0.04 −0.19 −0.08 −0.09∗∗∗ −0.10∗∗∗ −0.12∗∗∗

9 −0.11 −0.31∗ −0.14 −0.13∗∗∗ −0.13∗∗∗ −0.14∗∗∗

10 (high) −0.60∗∗∗ −0.92∗∗∗ −0.01 −0.17∗∗∗ −0.17∗∗∗ −0.20∗∗∗

10–1 −0.74∗∗∗ −1.25∗∗∗ 0.09 −0.11∗∗∗ −0.11∗∗∗ −0.13∗∗∗

(−3.96) (−4.94) (0.22) (−9.05) (−8.95) (−7.00)
∗∗∗

p < 0.01; ∗∗
p < 0.05; ∗

p < 0.1
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Table 5: Characteristics of the MISP portfolios

This table shows several stock and option characteristics of portfolios formed on the stock-specific MISP measure of Stambaugh, Yu,
and Yuan (2015). The first two rows correspond to their main explanatory variables, the MISP measure and Ang et al.’s (2006)
idiosyncratic stock volatility. The second part shows the stocks’ Amihud (2002) illiquidity and the relative bid-ask spreads of the
stocks and options, where the latter is defined as the average of the respective relative spread of the at-the-money-forward call and put
option with one month to maturity. The next part shows the average market cap and the dollar open interest of the reference options.
In the last line, we report the average variance risk premium of the stock, as defined by Carr and Wu (2009). For each variable, the
last column shows the average differnce between the tenth and first portfolio with significances based on Newey and West (1987)
standard errors.

Portfolio 1 2 3 4 5 6 7 8 9 10 10–1

MISP 27.89 35.43 39.73 43.44 46.93 50.41 54.19 58.48 63.87 73.55 45.65∗∗∗

IVOL (%) 1.78 1.79 1.85 1.91 2.00 2.09 2.23 2.33 2.47 2.75 0.98∗∗∗

Amihud illiquidity (per $100 mn) 0.59 0.57 0.64 0.73 0.78 0.92 1.04 1.19 1.24 1.50 0.91∗∗∗

Stock bid-ask spread (%) 0.36 0.39 0.40 0.40 0.42 0.43 0.43 0.46 0.47 0.51 0.15∗∗∗

Option bid-ask spread (%) 19.28 20.00 21.15 22.49 22.61 23.37 23.81 23.76 24.56 24.66 5.37∗∗∗

Market cap (bn $) 16.75 13.47 11.28 9.71 7.66 6.49 5.47 4.81 4.17 3.23 −13.52∗∗∗

Value of call open interest ($1000) 3.28 2.76 2.62 2.33 2.00 1.97 1.82 1.77 1.73 1.68 −1.60∗∗∗

Value of put open interest ($1000) 2.10 1.75 1.67 1.50 1.37 1.33 1.26 1.18 1.18 1.13 −0.97∗∗∗

Variance risk premium (%) 0.22 0.39 0.48 0.57 0.52 0.46 0.41 −0.07 −0.91 −2.37 −2.59∗∗

∗∗∗
p < 0.01; ∗∗

p < 0.05; ∗
p < 0.1
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Table 6: MISP portfolio sort conditional on the variance risk premium

This table shows results from a portfolio sort on the stock-specific MISP measure of Stambaugh, Yu, and
Yuan (2015), controlling for the variance risk premium (VRP). Each month, we form decile portfolios on the
variance risk premium and then ten conditional MISP-portfolios. We aggregate the VRP-MISP portfolios in
the VRP dimension to get ten MISP portfolios with comparable VRP levels. For each of these portfolios,
we consider the respective stock returns, as well as the returns of synthetic forwards and conversion trades
constructed from the corresponding at-the-money-forward call and put options with one month to maturity.
All alphas are given in monthly percent, significances are based on Newey and West (1987) standard errors.

FF3 alpha

Portfolio VRP MISP Stocks Forwards Conversions

1 (low) 0.02 28.90 0.16 0.23∗ −0.07∗∗∗

2 −0.15 36.36 0.31∗∗∗ 0.39∗∗∗ −0.07∗∗∗

3 −0.24 40.53 0.07 0.15 −0.07∗∗∗

4 −0.31 44.01 0.05 0.12 −0.07∗∗∗

5 −0.17 47.26 0.16 0.24∗ −0.08∗∗∗

6 −0.01 50.53 0.06 0.15 −0.09∗∗∗

7 −0.17 54.10 −0.11 −0.02 −0.09∗∗∗

8 −0.34 58.19 −0.27∗ −0.18 −0.10∗∗∗

9 −0.29 63.38 −0.47∗∗∗ −0.35∗∗ −0.12∗∗∗

10 (high) −0.15 72.38 −0.97∗∗∗ −0.84∗∗∗ −0.13∗∗∗

10–1 −0.17 43.47∗∗∗ −1.13∗∗∗ −1.07∗∗∗ −0.06∗∗∗

(−0.73) (135.72) (−4.35) (−4.09) (−6.94)
∗∗∗

p < 0.01; ∗∗
p < 0.05; ∗

p < 0.1
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Table 7: Regression analysis

This table shows results from Fama-MacBeth regressions of monthly forward and conversion returns (in basis
points) on the MISP measure of Stambaugh, Yu, and Yuan (2015). The MISP measure is standardized to
have zero mean and a standard deviation of one. In regressions (2), (4), and (5), we control for idiosyncratic
volatility, Amihud (2002) illiquidity, the relative option bid-ask spread, firm size (defined as the logarithm
of market capitalization), the logarithm of the value of open interest (defined as the sum of the respective
products of option price and open interest for the call and put option), the call-put open interest ratio (i.e.
call open interest relative to put open interest), and the stock-specific variance risk premium. In specification
(5), we multiply the starred variables with the sign of the respective conversion return to quantify the impact
on absolute conversion returns. We report time-series averages of the cross-sectional regression coefficients,
along with Newey and West (1987) t-statistics.

Forward return (bps) Conversion return (bps)

(1) (2) (3) (4) (5)

MISP (std) −24.14∗∗ −23.40∗∗∗ −2.88∗∗∗ −1.45∗∗∗ −1.52∗∗∗

(−2.53) (−3.10) (−8.83) (−6.16) (−8.26)

IVOL* −15.00∗∗ −2.01∗∗∗ 7.21∗∗∗

(−2.01) (−6.22) (17.17)

ILLIQ* 0.86 0.21 2.83∗∗∗

(0.34) (0.70) (10.35)

Option spread (%)* −0.11 −0.05 0.93∗∗∗

(−0.17) (−1.44) (14.51)

Firm size* −11.00 2.06∗∗∗ −1.50∗∗∗

(−1.35) (7.94) (−11.23)

Log(OI value)* −0.27 −1.39∗∗∗ 2.43∗∗∗

(−0.06) (−6.99) (10.98)

OI value call/put −0.04 −0.02∗∗∗ −0.01
(−0.41) (−2.99) (−1.20)

VRP 6.10 17.36∗∗∗ 16.43∗∗∗

(0.12) (6.09) (6.25)

Constant 83.43∗∗ 271.55∗∗ −8.73∗∗∗ −24.52∗∗∗ −3.29∗∗∗

(2.03) (2.16) (−9.92) (−6.79) (−11.93)

(*) signed no no no no yes
∗∗∗

p < 0.01; ∗∗
p < 0.05; ∗

p < 0.1
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Table 8: Mispricing in option returns

This table shows several types of call and put option portfolios formed on the MISP measure of Stambaugh,
Yu, and Yuan (2015). For each portfolio, we report Fama and French (1993) alphas of raw (rO) and daily
delta-hedged (rdh) option gains relative to the options’ price. In addition, we consider leverage-adjusted
returns, r̂O and r̂dh, given by the respective option gains relative to the product of the options’ absolute delta
and the underlying stock prices. All alphas are given in monthly percent, significances are based on Newey
and West (1987) standard errors.

Call options Put options

Raw Delta-hedged Raw Delta-hedged

Portfolio rO r̂O rdh r̂dh rO r̂O rdh r̂dh

1 (low) 2.04 0.02 −0.33 −0.10 −8.06∗∗∗ −0.69∗∗∗ −1.86∗∗ −0.25∗∗∗

2 0.58 −0.08 −0.96 −0.11 −8.15∗∗∗ −0.67∗∗∗ −1.92∗ −0.24∗∗

3 2.23 −0.04 0.09 −0.05 −5.67∗∗ −0.43∗∗ −1.67∗ −0.22∗∗

4 1.48 −0.05 0.19 −0.03 −6.20∗∗ −0.44∗ −1.81∗ −0.22∗∗

5 0.91 −0.11 0.14 −0.04 −4.94∗ −0.34 −2.55∗∗ −0.28∗∗∗

6 1.80 −0.05 −0.13 −0.05 −5.20∗∗ −0.32 −2.36∗∗ −0.29∗∗∗

7 1.37 −0.11 −0.02 −0.06 −1.76 −0.17 −1.89∗ −0.26∗∗

8 −0.46 −0.39∗ −0.70 −0.16∗ −1.99 −0.07 −2.92∗∗∗ −0.44∗∗∗

9 −1.36 −0.55∗∗∗ −0.14 −0.13 −0.65 0.08 −3.32∗∗∗ −0.54∗∗∗

10 (high) −4.29∗ −1.02∗∗∗ −0.17 −0.18 4.48 0.86∗∗ −3.43∗∗∗ −0.69∗∗∗

10–1 −6.34∗∗∗ −1.04∗∗∗ 0.15 −0.09 12.55∗∗∗ 1.55∗∗∗ −1.57∗∗ −0.43∗∗∗

(−2.94) (−3.85) (0.18) (−0.89) (5.40) (4.62) (−2.02) (−3.72)
∗∗∗

p < 0.01; ∗∗
p < 0.05; ∗

p < 0.1
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Table 9: MAX effect in stocks and option portfolios

This table shows Fama and French (1993) alphas of portfolios formed on the MAX measure of Bali, Cakici,
and Whitelaw (2011), i.e., the highest daily return in the preceding month. For each stock portfolio, we
consider the respective stock returns, as well as the returns of synthetic forwards and conversion trades
constructed from the corresponding at-the-money-forward call and put options with one month to maturity.
All alphas are given in monthly percent, significances are based on Newey and West (1987) standard errors.

Portfolio Stocks Forwards Conversions Forwards (adj.) Conversions (adj.)

1 (low) 0.22∗∗ 0.28∗∗ −0.06∗∗∗ 0.18∗ 0.04∗∗∗

2 0.05 0.11 −0.06∗∗∗ 0.02 0.03∗∗∗

3 0.06 0.13 −0.07∗∗∗ 0.03 0.03∗∗∗

4 0.00 0.07 −0.06∗∗∗ −0.03 0.03∗∗∗

5 −0.07 0.00 −0.07∗∗∗ −0.09 0.02∗∗∗

6 0.00 0.08 −0.09∗∗∗ −0.01 0.01∗∗

7 −0.24∗∗ −0.14 −0.10∗∗∗ −0.23∗∗ 0.00
8 −0.43∗∗∗ −0.32∗∗∗ −0.11∗∗∗ −0.42∗∗∗ −0.02∗∗∗

9 −0.75∗∗∗ −0.60∗∗∗ −0.15∗∗∗ −0.70∗∗∗ −0.05∗∗∗

10 (high) −1.07∗∗∗ −0.88∗∗∗ −0.19∗∗∗ −0.97∗∗∗ −0.10∗∗∗

10–1 −1.28∗∗∗ −1.15∗∗∗ −0.13∗∗∗ −1.15∗∗∗ −0.13∗∗∗

(−5.11) (−4.55) (−10.18) (−4.55) (−10.18)
∗∗∗

p < 0.01; ∗∗
p < 0.05; ∗

p < 0.1
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Table 10: MAX effect in option returns

This table shows several types of call and put option portfolios formed on the MAX measure of Bali, Cakici,
and Whitelaw (2011), i.e., the highest daily return in the preceding month. For each portfolio, we report
Fama and French (1993) alphas of raw (rO) and daily delta-hedged (rdh) option gains relative to the options’
price. In addition, we consider leverage-adjusted returns, r̂O and r̂dh, given by the respective option gains
relative to the product of the options’ absolute delta and the underlying stock prices. All alphas are given in
monthly percent, significances are based on Newey and West (1987) standard errors.

Call options Put options

Raw Delta-hedged Raw Delta-hedged

Portfolio rO r̂O rdh r̂dh rO r̂O rdh r̂dh

1 (low) 5.61∗ 0.09 −1.31 −0.14∗∗ −9.94∗∗∗ −0.53∗∗∗ −3.85∗∗∗ −0.33∗∗∗

2 2.55 −0.02 −0.57 −0.11 −5.37∗ −0.26 −2.72∗∗∗ −0.28∗∗∗

3 3.22 0.02 −0.33 −0.09 −4.89 −0.27 −2.46∗∗ −0.28∗∗∗

4 1.23 −0.11 0.05 −0.08 −5.53∗∗ −0.36 −2.35∗∗ −0.30∗∗∗

5 1.57 −0.08 −0.05 −0.09 −2.78 −0.14 −2.03∗∗ −0.30∗∗∗

6 0.99 −0.09 0.33 −0.05 −4.21∗ −0.35 −2.28∗∗ −0.30∗∗∗

7 −0.23 −0.31 0.14 −0.07 −0.90 −0.09 −1.50∗ −0.33∗∗∗

8 −1.77 −0.48∗∗ 0.28 −0.03 −0.44 0.07 −2.43∗∗∗ −0.40∗∗∗

9 −3.70 −0.78∗∗∗ 0.26 −0.07 0.83 0.34 −2.63∗∗∗ −0.48∗∗∗

10 (high) −6.55∗∗∗ −1.24∗∗∗ −0.79 −0.20∗ −0.52 0.39 −4.52∗∗∗ −0.81∗∗∗

10–1 −12.16∗∗∗ −1.33∗∗∗ 0.53 −0.06 9.42∗∗∗ 0.92∗∗∗ −0.67 −0.48∗∗∗

(−4.29) (−4.38) (0.57) (−0.68) (3.28) (2.92) (−0.74) (−4.38)
∗∗∗

p < 0.01; ∗∗
p < 0.05; ∗

p < 0.1
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Table 11: Effects of mispricing and idiosyncratic volatility in forwards and conversion returns

This table shows Fama and French (1993) alphas of double-sorted stock portfolios. Each month, we first
form five portfolios on idiosyncratic volatility. Within each of these portfolios, we then form five portfolios
on the MISP measure of Stambaugh, Yu, and Yuan (2015). In Panel A, we report the alphas of synthetic
forward returns, Panel B shows the corresponding returns of conversion trades, both constructed from the
at-the-money-forward call and put options with one month to maturity. All alphas are given in monthly
percent, significances are based on Newey and West (1987) standard errors.

Panel A: Forwards

IVOL portfolio

MISP portfolio 1 (low) 2 3 4 5 (high) 5–1

1 (low) 0.29∗∗ 0.35∗∗∗ 0.58∗∗∗ 0.14 0.03 −0.26
(−0.97)

2 0.25∗∗ 0.25∗ 0.25∗ −0.13 −0.58∗∗ −0.83∗∗∗

(−2.88)
3 0.27∗∗ 0.28∗∗ 0.23 0.22 −0.43∗ −0.70∗∗

(−2.54)
4 0.27∗ 0.23∗ 0.17 −0.26 −0.86∗∗∗ −1.14∗∗∗

(−3.90)
5 (high) −0.14 −0.07 −0.38∗∗ −0.72∗∗∗ −1.43∗∗∗ −1.29∗∗∗

(−4.24)
5–1 −0.43∗∗ −0.43∗∗ −0.97∗∗∗ −0.85∗∗∗ −1.45∗∗∗ −1.03∗∗∗

(−2.46) (−2.23) (−3.75) (−2.75) (−3.95) (−2.85)
∗∗∗

p < 0.01; ∗∗
p < 0.05; ∗

p < 0.1

Panel B: Conversions

IVOL portfolio

MISP portfolio 1 (low) 2 3 4 5 (high) 5–1

1 (low) −0.04∗∗∗ −0.05∗∗∗ −0.05∗∗∗ −0.08∗∗∗ −0.11∗∗∗ −0.07∗∗∗

(−5.26)
2 −0.05∗∗∗ −0.05∗∗∗ −0.05∗∗∗ −0.08∗∗∗ −0.11∗∗∗ −0.07∗∗∗

(−5.26)
3 −0.05∗∗∗ −0.05∗∗∗ −0.07∗∗∗ −0.08∗∗∗ −0.13∗∗∗ −0.08∗∗∗

(−5.68)
4 −0.06∗∗∗ −0.07∗∗∗ −0.07∗∗∗ −0.09∗∗∗ −0.21∗∗∗ −0.15∗∗∗

(−7.87)
5 (high) −0.07∗∗∗ −0.08∗∗∗ −0.10∗∗∗ −0.13∗∗∗ −0.25∗∗∗ −0.19∗∗∗

(−9.25)
5–1 −0.02∗∗∗ −0.03∗∗∗ −0.05∗∗∗ −0.05∗∗∗ −0.14∗∗∗ −0.12∗∗∗

(−3.92) (−4.75) (−5.17) (−4.35) (−7.61) (−6.27)
∗∗∗

p < 0.01; ∗∗
p < 0.05; ∗

p < 0.1
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Table 12: Effects of mispricing and stock illiquidity in forwards and conversion returns

This table shows Fama and French (1993) alphas of double-sorted stock portfolios. Each month, we first
form five portfolios on Amihud (2002) illiquidity. Within each of these portfolios, we then form five portfolios
on the MISP measure of Stambaugh, Yu, and Yuan (2015). In Panel A, we report the alphas of synthetic
forward returns, Panel B shows the corresponding returns of conversion trades, both constructed from the
at-the-money-forward call and put options with one month to maturity. All alphas are given in monthly
percent, significances are based on Newey and West (1987) standard errors.

Panel A: Forwards

ILLIQ portfolio

MISP portfolio 1 (low) 2 3 4 5 (high) 5–1

1 (low) 0.32∗∗ 0.40∗∗∗ 0.28∗ 0.35∗∗ −0.11 −0.43∗

(−1.89)
2 0.36∗∗∗ 0.32∗∗ 0.23 0.27 −0.16 −0.52∗∗

(−2.16)
3 0.27∗∗ 0.28∗∗ 0.03 0.19 −0.22 −0.49∗∗

(−2.29)
4 0.06 0.15 0.06 0.07 −0.20 −0.26

(−1.08)
5 (high) −0.46∗∗∗ −0.74∗∗∗ −0.69∗∗∗ −0.61∗∗∗ −0.14 0.32

(1.06)
5–1 −0.78∗∗∗ −1.15∗∗∗ −0.97∗∗∗ −0.96∗∗∗ −0.03 0.75∗∗

(−3.19) (−4.33) (−2.93) (−3.56) (−0.11) (2.20)
∗∗∗

p < 0.01; ∗∗
p < 0.05; ∗

p < 0.1

Panel B: Conversions

ILLIQ portfolio

MISP portfolio 1 (low) 2 3 4 5 (high) 5–1

1 (low) −0.02∗∗∗ −0.06∗∗∗ −0.08∗∗∗ −0.09∗∗∗ −0.09∗∗∗ −0.06∗∗∗

(−4.00)
2 −0.03∗∗∗ −0.06∗∗∗ −0.08∗∗∗ −0.09∗∗∗ −0.09∗∗∗ −0.06∗∗∗

(−3.11)
3 −0.03∗∗∗ −0.06∗∗∗ −0.09∗∗∗ −0.09∗∗∗ −0.09∗∗∗ −0.06∗∗∗

(−3.28)
4 −0.04∗∗∗ −0.07∗∗∗ −0.09∗∗∗ −0.12∗∗∗ −0.12∗∗∗ −0.09∗∗∗

(−4.72)
5 (high) −0.05∗∗∗ −0.09∗∗∗ −0.12∗∗∗ −0.14∗∗∗ −0.26∗∗∗ −0.21∗∗∗

(−10.20)
5–1 −0.03∗∗∗ −0.03∗∗∗ −0.04∗∗∗ −0.05∗∗∗ −0.17∗∗∗ −0.14∗∗∗

(−5.47) (−3.20) (−3.63) (−3.76) (−8.38) (−7.28)
∗∗∗

p < 0.01; ∗∗
p < 0.05; ∗

p < 0.1
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Table 13: Regression analysis of mispricing and arbitrage frictions

This table shows results from Fama-MacBeth regressions of monthly forward and conversion returns (in basis
points) on the MISP measure of Stambaugh, Yu, and Yuan (2015), idiosyncratic volatility (IVOL), Amihud
(2002) illiquidity (ILLIQ), and their interaction. All variables are standardized to have zero mean and a
standard deviation of one. We report time-series averages of the cross-sectional regression coefficients, along
with Newey and West (1987) t-statistics.

Forward return (bps) Conversion return (bps)

(1) (2) (3) (4) (5) (6)

MISP (std) −12.81 −25.38∗∗∗ −13.77∗ −2.26∗∗∗ −2.84∗∗∗ −2.09∗∗∗

(−1.64) (−2.62) (−1.77) (−7.57) (−8.46) (−7.02)

IVOL (std) −9.86 −11.30 −4.39∗∗∗ −4.13∗∗∗

(−0.64) (−0.73) (−8.63) (−8.10)

MISP × IVOL −13.23∗∗ −13.40∗∗ −1.45∗∗∗ −1.60∗∗∗

(−2.35) (−2.38) (−4.84) (−5.10)

ILLIQ (std) −1.33 −1.38 −1.35 −0.06
(−0.10) (−0.10) (−0.99) (−0.04)

MISP × ILLIQ 7.04 9.22 −3.11∗∗∗ −2.59∗∗∗

(0.84) (0.91) (−3.76) (−2.78)

IVOL × ILLIQ −13.55 1.71
(−0.72) (1.47)

MISP × IVOL × ILLIQ 12.99 −2.56∗∗

(0.86) (−2.33)

Constant 80.28∗∗ 82.41∗∗ 80.82∗∗ −8.80∗∗∗ −8.70∗∗∗ −8.76∗∗∗

(2.04) (1.99) (2.03) (−11.42) (−9.98) (−11.23)
∗∗∗

p < 0.01; ∗∗
p < 0.05; ∗

p < 0.1

56



Table 14: Trading against stock mispricing and transaction costs

This table shows average excess returns of portfolios formed on the stock-specific MISP measure of Stambaugh,
Yu, and Yuan (2015). For each portfolio, we consider reverse conversion trades, i.e., a short stock position
and a long synthetic forward, constructed from the corresponding at-the-money-forward call and put options
with one month to maturity. All returns are given in monthly percent, significances are based on Newey and
West (1987) standard errors.

Reverse conversions

Portfolio δ = 0% δ = 10% δ = 15% δ = 25% δ = 50% δ = 100%

1 (low) 0.06∗∗∗ −0.04∗∗∗ −0.08∗∗∗ −0.18∗∗∗ −0.41∗∗∗ −0.89∗∗∗

2 0.06∗∗∗ −0.04∗∗∗ −0.09∗∗∗ −0.19∗∗∗ −0.43∗∗∗ −0.94∗∗∗

3 0.06∗∗∗ −0.04∗∗∗ −0.09∗∗∗ −0.20∗∗∗ −0.46∗∗∗ −1.00∗∗∗

4 0.06∗∗∗ −0.06∗∗∗ −0.11∗∗∗ −0.22∗∗∗ −0.51∗∗∗ −1.09∗∗∗

5 0.07∗∗∗ −0.05∗∗∗ −0.11∗∗∗ −0.22∗∗∗ −0.52∗∗∗ −1.13∗∗∗

6 0.07∗∗∗ −0.05∗∗∗ −0.12∗∗∗ −0.24∗∗∗ −0.56∗∗∗ −1.20∗∗∗

7 0.07∗∗∗ −0.06∗∗∗ −0.12∗∗∗ −0.26∗∗∗ −0.59∗∗∗ −1.27∗∗∗

8 0.09∗∗∗ −0.05∗∗∗ −0.11∗∗∗ −0.25∗∗∗ −0.60∗∗∗ −1.31∗∗∗

9 0.12∗∗∗ −0.03∗∗∗ −0.11∗∗∗ −0.26∗∗∗ −0.64∗∗∗ −1.42∗∗∗

10 (high) 0.16∗∗∗ −0.01 −0.10∗∗∗ −0.27∗∗∗ −0.70∗∗∗ −1.57∗∗∗

10–1 0.10∗∗∗ 0.02∗∗ −0.01 −0.09∗∗∗ −0.28∗∗∗ −0.68∗∗∗

(8.66) (2.45) (−1.30) (−6.89) (−11.32) (−12.45)
∗∗∗

p < 0.01; ∗∗
p < 0.05; ∗

p < 0.1
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